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The Maximal Flow Problem 

 
    
 
The Maximal flow problem 
 
We are given a digraph – that is a graph with directed edges connecting one vertex to 
another.  Along each edge (or corresponding to each edge) there is an integer-valued 
quantity that represents the capacity of that edge. 
 
One vertex is defined to be the source, and another vertex is defined to be the sink.  
We imagine that a fluid is flowing from the source to the sink along the edges, which 
we may picture as pipes having the designated maximum capacity.  The source is the 
source of the fluid, and the sink is its ultimate destination. 
 
For example, the digraph 
 

 
 
defines a capacitative network where vertex 1 is source and vertex 7 is the sink. 
 
A flow is feasible if the inflow to it does not exceed the outflow from it.  (This is 
called the conservation condition). 
 
The problem is to find the maximum flow in the network – that is the value of the 
flow that makes the feasible flow as large as possible. 
 
This is found by a process of making “cuts” in the digraph.  To illustrate this first 
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The cut here is shown by the dashed line.  Along the cut we evaluate the maximum 
flow.  Any flow in the direction of source to sink (forward flows) is counted at a 
maximum, and the sum of all forward flows is found.  Any flows form sink to source 
– backflows - are set to zero, and are effectively ignored. 
 

 
 
Forward flows are 1 4  and 2 3  with maximum flow 7 + 9 = 16; back 
flows are 4 2  and 6 2  and we ignore the flows along these backflows 
when finding the value of the cut. 
 
Thus, technically, a cut is a partition of the digraph into two sets and a computation of 
the maximum forward flow along the edges joining vertices in one set to vertices in 
the other.  In a cut the source must be in one of the sets and the sink in the other.   
 
Here, our cut partitions the digraph into sets. 
 
S = { 1,2 } 
T = { 3,4,5,6,7 } 
 
With forward flows 71 4  , 92 3  and backflows 84 2 , 46 2  



 
 

 © blacksacademy.net 
 
 

3 

The sum of the forward flows is 7 + 9 = 16 as before. 
 
(This technical language might be important for theoretical work, and also if we were 
considering programming a computer to find the maximum flow.) 
 
The solution to the maximum flow problem now follows the max-flow, min-cut 
theorem (the Ford-Fulterson theorem): In a capacitated network, the value of a 
maximum flow is equal to the capacity of a minimum cut. 
 
Thus, to solve the problem we simply evaluate all possible cuts – the maximum flow 
will correspond to the value of the minimum cut. 
 
 

 
 
 
This diagram shows all the cuts in the capacitative network.  The minimum value of 
the cut is 12, and this is the maximum flow from source (1) to sink (7).  Along the 
minimum cuts the assignment of flows must equal the capacity of the edge; elsewhere 
the assignment must be such that the flow through the cut is equal to the maximum 
flow.  One possible assignment of flows in this example is: 
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On this diagram the first number along the edge represents the actual flow along that 
edge; the second represents the capacity of the edge. 
 
The process of finding all the cuts in a network could be tedious, especially is the 
network was large.  Additionally, we may start with a feasible flow and ask the 
question can the flow be improved so that we obtain an increased or maximum flow 
rate. 
 
We seek an algorithm that starts with a feasible flow and augments it until we obtain a 
maximum flow. 
 
This is provided by the Edmonds-Karp algorithm to solve the maximum flow 
problem. 
 
We will illustrate this process by using it on our example.  A feasible flow is given 
by: 
 

 
 
We now construct another digraph derived from this one, with the rules 
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1. If an edge is flow saturated, replace it by an edge with the arrow pointing in 
the opposite direction.  An edge is flow saturated if its flow is equal to its 
capacity.  Here 1 4 , 4 6 , and 3 7  are flow saturated and will 
be replaced by edges with arrows pointing in the opposite direction. 

 
2. If an edge has flow zero leave it unchanged – this applies to edges 6 2 , 

6 3  and 6 7 . 
 
3. If an edge has a flow that is not zero but less than its capacity then replace it 

by an edge without any direction (arrows).  This applies to edges 1 2 , 
4 2 , 2 3 , 5 4 , 6 5  and 5 7 . 

 
 

 
 
The next stage is to ask whether it is possible to connect the source to the sink along 
edges that are either undirected or are directed with arrows pointing from source to 
sink. 
 
Here, there is a path 1 – 2 – 4 – 5 – 7; there is also a second path 1 – 2 – 4 – 5 – 6 – 7.  
The backwards-pointing arrows prevent any other path. 
 
Since there is a path, it is possible to augment the flow along this path.  To augment 
the path, decrease any backflow along it as much as possible and increase the forward 
flow as much as possible.  The increase or decrease along the path must be the same 
along all edges. 
 
The existing flow is 
 

3,8 5,8 2,5 2,81 2 4 5 7     
 
Increasing by +2 units along this path, we obtain the flow 
 

0,5
5,8 3,8 4,81 2 4 5 7       

 
We obtain the following revised assignment: 
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We repeat the process of constructing the derived digraph. 
 

 
 
 
It is now not possible to construct a path in the derived digraph connecting the source 
to the sink.  This tells us that the augmented flow is a maximal flow and that we have 
solved the problem. 
 

 


