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Moment of Inertia 
 
 
Recall that the position, P, of an object on a circular track of radius r can be specified by the 
angle, θ, made with a chosen axis: 
 

r
P

 
 
If the object is moving around the track it will have an angular velocity – the rate of change 
of θ with t. 
 

d

dt

    

 
If the object is accelerating around the track it will have an angular acceleration: 
 

2

2

d d

dt dt

        

 
Forces cause objects to accelerate, as indicated by Newton's 2nd law. When a force acts on 
an object at a distance from its centre of mass it also causes that object to spin. The effect of 
this is called torque of moment. Just as forces causes objects to accelerate so torques causes 
angular acceleration – torque causes a change in angular velocity. 
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Newton's Second Law for angular acceleration states: 
 
Torque  angular acceleration  
 
We can compare this with Newton's Second Law; 
 
Force  linear acceleration  
 
Then Newton's Second Law leads to the equation: 
 
F =  ma 
 
Here mass, m, is the constant of proportionality in Newton's Second law. Consequently, 
mass is more appropriately termed 'inertial mass'. 
 
Designating torque by C and angular acceleration by 
 
      
 
we seek an equivalent constant of proportionality for the angular application of Newton's 
Second Law. The constant, designated I, is called the moment of inertia.. 
 
Torque = moment of inertia   angular acceleration 
 

  or  C I C I    
 
Just as inertial mass is a property of every physical body, so moment of inertia is a property 
if every physical body. The moment inertia must be derived with respect to an axis of 
rotation. A standard axis will be one that passes through the centre of mass of an object, and, 
if that object is a rod or a plane lamina, will pass perpendicular to that rod or lamina. 
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1. A particle is a null dimensional object of mass M but no size. It can have a moment 
of inertia about any axis at a distance r. 

2. A rod is a one-dimensional object of theoretically no radius. Any standard axis of 
rotation passes through the centre of mass c, and is perpendicular to the mass. 

3. A lamina is a two-dimensional object of theoretically no breadth. The standard axis 
of rotation passes through the centre of mass and is perpendicular to the surface. 

4. A solid is a three-dimensional object. The standard axis of rotation passes through 
the centre of mass. However, only solids with an axis of symmetry have an axis of 
rotation. For asymmetrical solids the moment of inertia is different for each axis of 
rotation. 

 
We seek a definition of the moment of inertia it terms of its mass and location of its axis of 
rotation. We seek rules for the addition of moments of inertia. When two particles are joined 
together we merely ass their masses to find the inertial mass, but we cannot expect that 
addition of moments of inertia will obey such simple laws! 
 
 
Definition of inertia for a particle 
 
Let P be a particle of mass m rotating about an axis at a distance r. Then the moment of 
inertia I, of P about this fixed axis is given by 
 

2I mr  
 
We will now demonstrate the consistency of this definition. 
 

L

P
m

r0

 
 
Let P be rotating about a fixed axis L passing through a point O at a distance r from P. Let 
its angular acceleration about this axis be 
 
  
 
Its linear acceleration may be resolved into two components – one radial, FR, and the other 
tangental, FT, to the orbit. 
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FT

FR

 
 
The linear acceleration of the object can likewise be resolved into radial and tangental 
components. Radially, the linear acceleration is a centripetal acceleration and is given by: 
 

2 2r r    
 
Tangentally, the linear acceleration is given by: 
 

2 2

2 2

where

d d d d
s v r r r

dt dt dt dt

s r

  



   



 

 

 
is arc length. That is tangental linear acceleration is 
 

Ta r   
 

2r

 
 
Tangental linear acceleration must obey Newton's Second law, hence: 
 

TF mr   
 
Multiplying both sides by r: 
 

2
TF r mr    
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Bur TF r C is the torque (or moment) applied to P. Hence 
 
C I   
 
Where I = mr2 is the moment of inertia.  
 
 
Addition law for moments of inertia for two or more particles rotating about the same 
axis of rotation 
 
Consider a system of n particles of possibly differing mass Mi and distance ri (where 1 ≤ i ≤ 
n) from a fixed axis or rotation, L. If all the particles in the system are rotating together then 
the moment of inertia of the whole system is given by: 
 

2

1

n

i i
i

I M r


  

 
In other words, for particles we simply add the moments of inertia to each particle to find 
the moment of inertia of a composite body. 
 
We will demonstrate the validity of this result for a composite body of two particles. 
 

L
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Let P and Q be two particles of mass m1 and m2 and perpendicular distance r1 and r2 from 
an axis of rotation L. The total torque applied to this system is: 
 

1 2

where

  and   

P Q

P P Q Q

C C C

C F r C F r

 

 
 

 
where FP and FQ are the tangental components of the forces acting on P and Q respectively. 
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Both particles are rigidly "fixed" to each other in someway, so their angular acceleration is 
the same: 
 
  
 
The moment of inertia of each particle is: 
 

2
1 1

2
2 2

P

Q

I m r

I m r




 

 
Let I = total momentum. Then applying Newton's Second law in the form  
 

2 2
1 1 2 2

2
2

1

we have

That is   as required.

P Q

P Q

i i
i

C I

I I I

I I I m r m r

I m r



  





 

    





    

 
The full result for n particles would follow by mathematical induction. 
 
We will now illustrate an application of this result. 
 

Example (1) 
 
Particles of mass m, 3m and 5m are situated at points (-2, 1), (2, 3) and (4, -1) 
respectively from O in the x, y plane. Find the moment of inertia of the whole system 
about the z-axis.  
 

x

yz

m 3m

5m

 
 



 
 

            Copyright © Blacksacademy – September 2001 
 

 
 

7 
 

2 2
1

2 2
2

2 2
3

2 1 5

2 3 10

4 1 17

r

r

r

  

  

  

 

 

 

1 2 3

2 2 2
1 1 2 2 3 3

5 3 10 5 17

5 30 85 120

I I I I

m r m r m r

m m m

m m

  

  
     

   

 

 
 
Standard results 
 
We now proceed to use the result  
 

2I mr  

 
to derive the standard results for the moment of inertia of a rod. 
 
Determination of these standard results by integration from first principals is, however, not 
required by the syllabus, and these derivations can be omitted. The student may choose to 
accept the results as standard results and proceed to the next part of the theory. 
 
Rod 
 
Rod of length 2l and mass M rotating about an axis perpendicular to the rod through the 
centre of mass has moment of inertia 
 

2

3

ml
I   

 
Proof 
 

x
l

 
 



 
 

            Copyright © Blacksacademy – September 2001 
 

 
 

8 
 

We divide the rod into segments each of length δx. Let ρ be the density of the rod – that is 
here the mass per unit length. We treat each element as a particle of mass M, given by 
 
M x  
 
Each segment is approximately a particle of mass M, and hence of moment inertia 
 

  2
MI x x   

 
where x is the distance of the segment from the axis of the rotation. Then the moment of 
inertia of the rod as a whole is given by  
 

mI I  

 
And in the limit, as δx → 0, the approximation becomes exact: 
 

2

3

3 3

3

3

3 3

2

3

l

l

l

l

I x dx

x

l l

l















 
  

 

  
    

  





 

 
Now the total mass is given by: 
 
M m x    

 
In the limit, when δx → 0 
 

 
2
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l
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 

     Shown 

 
The other standard results are proven similarly.  The standard results are as follows. 
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Uniform body of mass M Axis Moment of Inertia 
Rod of length 2a Through the centre and 

perpendicular to the rod 
2

3

Ma
 

Rod Parallel to the rod and at a 
distance, d, from it 

2Md  

Rectangle of length 2a and 
width 2b 

Passing through the 
midpoints of the side with 
length 2a and 
perpendicular to it 

2

3

Ma
 

Ring with radius a Through the centre of the 
ring and perpendicular to 
it 

2Ma  

Disc with radius a Through the centre of the 
disc and perpendicular to 
it 

2

2

Ma
 

Solid sphere with radius a A diameter 22

5

Ma
 

Hollow sphere of radius a A diameter 22

3

Ma
 

Solid cylinder of radius a The central axis 2

2

Ma
 

Hollow cylinder of radius a The central axis 2Ma  
 


