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Maclaurin Series 
 

 
The need for approximating functions 
 
The functions  and sinxe x  are examples of transcendental functions.   You should be familiar 

with functions like  and sinxe x , and also with finding values such as  3.7 1,sin 7e  by using a 

calculator or from tables.  But how are these values arrived at in the first place?  In certain cases 

we know the exact value, such as    1cos 3 2 .  This is because we can construct a “special 

triangle” which shows this to be exact. 
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But this does not help with  1sin 7 .  The function      3 22 5f x x x x  is an example of a 

polynomial function.  It would be helpful if we could write a function like sin x  as a polynomial, 

but this cannot be done!  That is precisely why functions like sin x  are said to be transcendental 

functions.  However, there is a way around this problem.  We can write sin x  as an infinite series 

of polynomial functions and we can use a finite part of such a series to find the value of sin x  for 

given x to any required level of accuracy.  To make this clearer, the series expansion for sin x  is in 

fact 

    
3 5 7

sin ...
3! 5! 7!

x x x
x x  

The dots mean that the series go on forever, according to a pattern.  So, the next term in this 

series would be 
9

9!

x
.  If we take a finite part of this we obtain an approximation for sin x .  Thus, 

for example, an approximation for  1sin 7  is 

     
   

3 5
1 1
7 711sin 0.142371737 7 3! 5!
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Comparing this with the calculator value of 0.142371729... indicates that (a) whilst it is a good 

approximation it is still only an approximation and therefore (b) more terms should be added to 

get closer and closer to the true value.  From this example, we can see here that simply having the 

series     
3 5 7

sin ...
3! 5! 7!

x x x
x x  does not solve all the problems.  To be useful (a) we need to 

know that the series converges on the exact real value of sin x  and (b) we need to know at any 

finite stage how close we are to that real value – in other words, what the difference is between 

the real value and the approximation.  However, these two topics of (a) convergence and (b) error 

are advanced topics and are left for a later chapter.  The purpose of this discussion is simply to 

show you why we need to approximate functions by series of polynomial functions.  We are also 

going to adopt a “cookery book” approach here to the subject – meaning, that we will show you 

the general formula and how to apply it, rather than prove the formula, since this is also a more 

advanced topic. 

 

Regarding sin x , note that     
3 5 7

sin ...
3! 5! 7!

x x x
x x  really provides us with a series of 

approximating polynomial functions. 

 

 

 

 

 



 

  

   

    

1

3

2

3 5

3

3 5 7

4

3 5 7 9

5

3!

3! 5!

3! 5! 7!

3! 5! 7! 9!

p x x

x
p x x

x x
p x x

x x x
p x x

x x x x
p x x

 

Let us illustrate what is meant by an approximation by looking at the graphs of some of these. 

 

( ) sinf x x=

( )1p x x=

( )
3

2 3!

x
p x x= -

( )
3 5

3 3! 5!

x x
p x x= - +

x

y
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Each successive approximation in this case is introducing an extra pair of minima and maxima.   

The further the value of x is taken away from 0 the worse the approximation.  The graph also 

shows that the approximation is centred around 0.  The expression     
3 5 7

sin ...
3! 5! 7!

x x x
x x  is 

said to be the standard series approximation for sin x  about 0.  It is called the Maclaurin series 

for sin x , after the Scottish mathematician Colin Maclaurin (1698 – 1796).  His theorem is called 

Maclaurin’s Theorem, and it has been vitally important to the development of mathematics 

because it enables transcendental functions such as  and sinxe x  etc., to be approximated by 

polynomial functions.  Transcendental functions are not directly calculable, but polynomial 

functions are. 

 
 
 

Maclaurin’s Theorem 
 
A function  f x can be approximated by an infinite series of polynomial terms in x.  The 

approximation fits around the graph of  f x  about a fixed point.  In Maclaurin’s Theorem the 

fixed point is 0.  The polynomial approximation about 0 is 

             

   



 
      



2 3

0

0 0 0
0 0 ... ....

2! 3! !

0

!

n n

n n

n

f x f x f x
f x f f x

n

f x

n



 

In this equation the symbols    , , ,... ,...nf f f f  mean the first, second, third and nth derivative of 

 f x  respectively.  The symbol    0nf means the nth derivative of  f x evaluated at 0.  We can see 

from the use of these symbols that for the theorem to apply the function must be infinitely 

differentiable.  The series must also converge on the function  f x .  In other words, each 

successive term in the series must get smaller and smaller.  This is written 

   
 

0
0  as  0

!

nf
n

n
 

At this level we will simply assume that all the functions for which we are asked to derive 

Maclaurin series do have this convergence property. 

 

Example (1) 

Find the standard Maclaurin series for sin x  up to the term in 7x . 
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Solution 

The formula is 

              
      

2 30 0 0
0 0 ... ....

2! 3! !

n nf x f x f x
f x f f x

n
  

This requires us to find the derivatives of sin x  up to the seventh derivative and to 

evaluate each at 0. 

   
   
   
   

       
       
       
       

  

   

     

      

  

  

    

     

4 4

5 5

6 6

7 7

sin 0 sin 0 0

cos 0 cos0 1

sin 0 sin 0 0

cos 0 cos0 1

sin 0 sin 0 0

cos 0 cos0 1

sin 0 sin 0 0

cos 0 cos0 1

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

 

On substituting into 

              
      

2 30 0 0
0 0 ... ....

2! 3! !

n nf x f x f x
f x f f x

n
  

we get 

    
3 5 7

sin ...
3! 5! 7!

x x x
x x  

Note that the series shows a definite pattern and that by the second derivative we have 

       sinf x x f x  

In other words the second derivative can be written in terms of the first derivative.  This  

can make finding series expansions easier.  For example we could have written 

 
 
   
   

       
     



 

    

  

 

 

4

5

sin

cos

sin

f x x

f x x

f x x f x

f x f x

f x f x f x

f x f x

 

This makes evaluating the series much simpler. 

 

Example (2) 

Find the Maclaurin series for    cos3f x x  up to the term in 4x .  
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Solution 

 
 
 

   
   



  

  





3

4

cos3

3sin3

9cos3

27sin3

81cos3

f x x

f x x

f x x

f x x

f x x

  

 
 
 

   
   



 

  





3

4

0 1

0 0

0 9

0 0

0 81

f

f

f

f

f

 

Then 

 
           



  
     

2 3

0

0 0 0
0 0 ...

! 2! 3!

n n

n

f x f x f x
f x f f x

n
 

Therefore, on substituting cos3x  for  f x and replacing each term by its corresponding 

value 

   

   

2 4

2 4

9 81
cos3 1 ...

2! 4!
9 27

1 ...
2 8

x x
x

x x
 

Hence 

  
2 49 27

cos3 1
2 8

x x
x  

 

Example (3) 

Find the Maclaurin series for     ln 1 4f x x  up to the term in 4x .  Use your series to find an 

approximation to  ln 1.04 to 6 d.p. 

 

   

   

   
     
     









 

    


   

 

  

1

2

33

44

ln 1 4

1
4 4 1 4

1 4

16 1 4

128 1 4

1536 1 4

f x x

f x x
x

f x x

f x x

f x x

 

   

 

 
   
   

 

  

  



 

3

4

0 ln 1 0

4
0 4

1
0 16

0 128

0 1536

f

f

f

f

f

 

Then 

 
           



  
     

2 3

0

0 0 0
0 0 ...

! 2! 3!

n n

n

f x f x f x
f x f f x

n
 

Therefore, on substituting  ln 1 4x for  f x and replacing each term by its 

corresponding value 
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      

   

2 3 4

3
2 4

4 16 128 1536
ln 1 4 0

1! 2! 3! 4!
64

4 8 64
3

x x x x
x

x
x x x

 

 

       

 

  

   



3
2 4

ln(1.04) ln 1 4 0.01

64 0.01
4 0.01 8 0.01 64 0.01

3
0.039221 6 d.p.

 

 

 

Standard Maclaurin series 
 

There are a number of standard Maclaurin series. 

    
2 3

1 ....
2! 3!

x x x
e x  

    
3 5 7

sin ...
3! 5! 7!

x x x
x x  

    
2 4 6

cos 1 ...
2! 4! 6!

x x x
x  

      
2 3 4

ln 1 ...
2 3 4

x x x
x x  

It is necessary to give an expansion for  ln 1 x rather than ln x  because there is no Maclaurin 

series for ln x .  This is because, when     lnf x x  then    1f x x .  Hence, when evaluating at 

 0x , we are required to divide by 0, and that is not permissible.  

 

From the Maclaurin series we can also derive the small angle approximations for sin , cosx x and 

tan x , which are 



 



2

sin

cos 1
2

tan .

x x

x
x

x x

 

These arise from taking only the first non-zero term in x .  These approximations only apply when 

x is small.1 

                                                 
1 However, logically the result sin x x  must be shown independently of the proof of Maclaurin’s series, 

since  1  as  0
sin

x
x

x
 is used to prove that sin cos

d
x x

dx
, which is then required when finding the 

Maclaurin series for sinx . 
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Taylor series 
 

We indicated that the Maclaurin series are polynomial approximations to a function  f x  about 0.  

That is, the value of  0f  is fixed and the polynomial function is centred on this value.  The 

disadvantage of this is that as we move further and further away from  0x  the approximation to 

 f x  gets worse and worse.  So sometimes we need to centre the approximation on a different 

value, when x a .  For historic reasons an approximation centred on a value x a  where a is 

some other value than zero, is called a Taylor series after the English mathematician Brook Taylor 

(1685 – 1731). 

 

The Maclaurin series, which is the polynomial approximation about 0 to a function  f x , is 

 
               



 
       

2 3

0

0 0 0 0
0 0 ... ....

! 2! 3! !

n nn n

n

f x f x f x f x
f x f f x

n n
  

The Taylor series, which is the polynomial approximation about a to a function  f x  is 

 
                       



   
        

2 3

0

... ....
! 2! 3! !

nn nn

n

f a x f a x a f a x a f a x a
f x f a f a x a

n n
  

 

Example (4) 

Find the Taylor series for    



1

1
f x

x
 at  1x  up to the term in 4x . 

       

   
 

 

   
 

 

     
 

   

     
 

   











   


       


    


      


    


1

2

2

3

3

43 3

4

54 4

5

1 1
1 1

1 2

1 1
1 1

41

2 1
2 1 1

41

6 3
6 1 1

81

24 24 3
24 1 1

32 41

f x x f
x

f x x f
x

f x x f
x

f x x f
x

f x x f
x

 

                     

                   

       

       

   
     

   
     

           

        

2 3 44

2 3 44

2 3 4

2 3 4

2! 3! 4 !

1 1 1 1 1 1
1 1 1

2! 3! 4!
1 1 1 1 3 1 3 1

1 1 1 4
2 4 4 2! 8 6 4 24
1 1 1 1 1

1 1 1 4
2 4 8 16 32

f a x a f a x a f a x a
f x f a f a x a

f x f x f x
f f x

x x x x

x x x x





 


