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Linear Combinations of Random 
Variables 
 
 
 

Prerequisites 
 

You should already have met the concept of the linear scaling and translation of the probability 

distribution of a random variable X in a number of contexts. 

 

Expectation and variance under a scaling and transformation 

Let X be a random variable with expectation  E X  and variance  var X .  Let a and b be 

constants. Then 

   
   

  

  2var var

E aX b aE X b

aX b a X
 

The expected value of X – that is, the expected mean is translated by the addition of b and 

multiplied by the scale factor a.  The variance is multiplied by the square of the of the scale factor 

a and is unaffected by the addition of b. 

 

Example (1) 

The random variable X has mean 12 and variance 4.  Find the mean and variance of the 

random variable  3 5Y X . 

 

Solution 

   
 

 

  

  


3 5

3 5

3 12 5

41

E Y E X

E X  

   
   

 



 


2

var var 3 5

3 var

9 4

36

Y X

X  

 

The above results apply also to continuous probability distributions and so we can extend these 

formulae to the normal distribution. 
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 Example (2) 

X is a random variable that follows the normal distribution with mean   and standard 

deviation  .  Find the mean and variance of the random variable  Y aX b . 

 

Solution 

   2,X N  

   
 



 

  

 

E Y E aX b

a E X b

a b

 

   
 



 





2

2 2

var var

var

Y aX b

a X

a

 

 

Example (3) 

In an observatory the luminosity X of stars from a cluster is found to be normally 

distributed with mean 20 arbitrary units and variance 25.  In order to standardise the 

results each luminosity is first multiplied by 4 and then 30 is subtracted.  Find the 

probability that the resultant standard Y is greater than or equal to 100.  No star is in fact 

given a standard value greater than 100.  If 300 stars are observed in the cluster find to 

the nearest whole number the expected number of stars that will given the maximum 

standard value of 100. 

 

Solution 

     220, 16 ,X N N  

 4 30Y X  

       4 30 4 20 30 50E Y  

       
2 2var 4 16 25 400Y  

Thus   50, 400Y N  

We require   100P Y .  The corresponding z-value is 



 

  
100 50

2.5
400

y
z  

             100 2.5 1 2.5 1 0.9938 0.0062P Y P Z  

The number of stars in the cluster that are expected to score 100 is  0.0062 300 1.86 , 

which is 2 stars to the nearest whole number. 

 



 
 

© blacksacademy.net 
 

3 

In this last example we are scaling and transforming a single probability distribution.   A different 

kind of problem arises when two independent variables are combined.  For example, suppose the 

weight of a printed sheet of card is normally distributed with mean 13.7 g and variance 0.2 g. and 

that the weight of an envelope is normally distributed with mean 5.7 g and variance 0.4 g.  To find 

the probability that the combined weight of one sheet of card and one envelop will be greater than 

20 g would be an instance where two independent random variables are linearly combined. 

 

 

 

Linear combinations of independent random variables 
 
 
Linear combination 

Let 1 2 and X X  be two independent random variables.  Let a and b be scalars.  Then a linear 

combination of the variables 1 2 and X X  is defined to be any other random variable of the form 

 1 2Y aX bX . 

 

Independence 

Two events, A & B, are independent if the probability of both A and B occurring together is equal 

to the product of the probability of A occurring and the probability of B occurring. 

       P A B P A P B .   

Let 1 2 and X X  be two random variables.  Then to say that 1 2 and X X  are independent is to say 

that any observation (or trial) of 1X  does not affect the probability of an observation of 2X  and 

vice-versa.  Let   and X x Y y  be the events X takes the value x and Y takes the value y 

respectively.  Then X and Y are independent if 

              and P X x Y y P X x P Y y . 

 

 Example (4) 

An aeroplane has 100 seats and on every flight all the seats are taken.  The passengers are 

either male or female.  The number of male passengers X on any one flight is known to 

follow a normal distribution with mean 45 and variance 16.    

(a) Let Y denote the number of female passengers on any one flight.  Explain why Y is 

not independent of X. 

(b) Find the mean and variance of Y. 
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Solution. 

(a) Since the total number of passengers is always fixed, then once the number of 

male passengers X is known, then the number of female passengers Y is 

immediately determined by  100Y X .  If there are 50 male passengers then 

there must be 50 female passengers.  Then, for instance,   40 0P Y  and  

                50  and 40 0P X Y P X x P Y y . 

 (b)        2100  and 45,16 ,Y X X N N  

  Y arises from X by a scale factor of 1  and a translation of 100 .  Hence 

       100 100 45 55E Y  

   2var 16Y  

 

We begin by stating the result for the expectation and variance when a random variable is formed 

from the linear combination of two independent random variables. 

 

Expectation and variance of the linear combination of independent random variables 

Let X and Y be independent random variables with expectations     and E X E Y  and variances 

   var  and varX Y  respectively.  Then 

       E aX bY aE X bE Y  

       E aX bY aE X bE Y  

     

     

  

  

2 2

2 2

var var var

var var var

aX bY a X b Y

aX bY a X b Y
 

Pay particular attention to the last of these formulae as the variances are still added even when Y 

is subtracted from X. 

 

Example (5) 

The random variables X and Y are independent random variables with  

   
   

 

 

3 var 0.5

2 var 3

E X X

E Y Y
 

Find the expectation and variance of  

 

 





2 3

1
2

2

a X Y

b X Y
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Solution 

       

     

       

       2 2

2 3 2 3 2 3 3 2 12

var 2 3 2 var 3 var 4 0.5 9 3 29

a E X Y E X E Y

X Y X Y
 

     

   

          
 

             
   

2
2

1 1 1 5
2 2 3 2 2

2 2 2 2

1 1 1 1 1
var 2 var 2 var 4 3 12

2 2 4 2 8

b E X Y E X E Y

X Y X Y

 

 

The above results apply to all linear combinations of random variables regardless of the form of 

their distribution.  However, we will also be interested in the form the linear combination of two 

random variables takes – that is, in the nature of the distribution that arises when two 

distributions are combined in some way.  The normal distribution will be of particular 

importance. 

 

 

 
The difference between linear combinations and scalar 
multiples 
 

Throughout this chapter we are looking at the following. 

(1)  The effect of taking a scalar multiple of a single random variable X.  Let X be a random 

variable and let a be a scalar.   Then Y aX  is another random variable.  We can find the 

distribution of Y in terms of the distribution of X and find the expectation and variance of 

Y in terms of the expectation and variance of X. 

   
   



 2var var

E aX aE X

aX a X
 

(2) The effect of taking a linear combination of two random variables X and Y.  Let X and Y be 

independent random variables.  Then X Y is another independent random variable.  

Sometimes, given the distributions of X and Y we can determine the distribution of 

X Y .  In particular we can find the expectation and variance of X Y  in terms of the 

expectation and variance of X and Y respectively. 

       E X Y E X E Y  

       E X Y E X E Y  

     

     

  

  

var var var

var var var

X Y X Y

X Y X Y
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It should be quite clear that cases (1) and (2) are distinct.  The formulae for the 

expectation and variance of the derived distributions are also different.  It is certainly a 

mistake to confuse the two cases. 

(3) We can also combine the two cases into a single formula dealing with the simultaneous 

effect of taking a linear combination of two independent random variables also subject to 

scalings.  If X and Y are independent random variables and a and b are scalars, then 

       E aX bY aE X bE Y  

       E aX bY aE X bE Y  

     

     

  

  

2 2

2 2

var var var

var var var

aX bY a X b Y

aX bY a X b Y
 

 

As indicated above it is important to maintain a clear distinction between the two cases, not least 

because the results for both are also different.  However, there is one situation where confusion 

can naturally arise.  In case (2) we deal with the linear combination of two independent random 

variables X and Y; specifically to form the random variable X Y .  However, suppose for instance 

that X and Y both represent the role of one fair cubical die, so that the probability distribution for 

X and Y is the same.  Then X and Y are independent observations of the same random variable 

whose distribution is the uniform distribution 

        
1

0 6
6

P X r P Y r r  

In situations of this type we sometimes use suffixes, so that we denote the background 

distribution by, say, X and let 1 2 and X X  stand for two linearly independent observations of X.  

Their linear combination is 1 2X X .  However, since these are both observations of the same 

random variable X, we might also write this as X X .  Finally, a potential ambiguity can arise 

when instead of writing X X  we also write 2X.  The expression 2X can consequently stand 

ambiguously for two totally different concepts 

 

(1) Where 2X stands for the scalar multiple of the single random variable X.  In this case 

 
   
     



 2

2 2

var 2 2 var 4var

E X E X

X X X
 

(2) Where 2X stands for the linear combination  1 22X X X  formed by adding the results of 

two separate independent observations  1 2,X X  of a single random variable X.  In this 

case 

 
         
         

    

    
1 2

1 2

2 2

var 2 var var var 2var

E X E X X E X E X E X

X X X X X X
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In these two cases formulae for the variance differ.  It would be nice to be able to avoid discussing 

this ambiguity altogether, but unfortunately, when you study sums of Poisson variables it will be 

necessary to keep this distinction in mind.  This is because it has become customary practice to 

use the symbol 2X in the context of a Poisson variable to stand for the linear combination of 

Poisson variables and not for the scalar multiple.  We will discuss this in more depth when we 

deal with sums of independent Poisson variables in a subsequent chapter. 

 

 Example (6) 

A cubical die is thrown twice.  Let X denote the random variable representing the score of 

one throw of this die.  Assume both throws of the die are independent. 

(a) Find the probability distribution of X and determine its expectation and variance. 

(b) Let D represent the random variable that stands for double the score of one 

throw of the die.  Determine the probability distribution of D and find its 

expectation and variance. 

(c) Let  Y X X  represent the random variable that stands for the score of the first 

throw of the die added to the score of the second throw.  Determine the 

probability distribution of Y and find its expectation and variance. 

 

Solution 

(a) We indicated above that X is uniformly distributed 

         
1

0 6
6

P X r P Y r r  

 Explicitly its probability distribution table is as follows. 

 

r 0 1 2 3 4 5 6 

 P X r  1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

 

 

   

   

     

    
    

    
   

                




2 2 2 2 2

2 2

2
22

1 2 3 4 5 6 21 7

6 6 2

1 2 3 4 5 6 91

6 6

91 7 35
var

6 2 12

E X r P X r

E X r P X r

X E X E X

 

 

(b) The random variable D arises from just doubling the score for each throw of one 

die. 



 
 

© blacksacademy.net 
 

8 

 

r 0 2 4 6 8 10 12 

 P X r  1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

 

  

     

     

  

    

2 2 7

35 35
var var 2 4var 4

12 3

E D E X E X

D X X
 

 (c) The following diagram represents the sample space of Y. 

 

  

1 2 3 4 5 6

1

2

3

4

5

6

first die

se
co

n
d

 d
ie

2 3

3

4

4

4

5

5

5

5

6

6

6

6

6

7

7

7

7

7

7

8

8

8

8

8 9

9

9

9

10

10

10 11

11

12
 

 

  Its probability distribution is 

   

r 2 3 4 5 6 7 

 P X r  1

36
 

2

36
 

3

36
 

4

36
 

5

36
 

6

36
 

r 8 9 10 11 12  

 P X r  5

36
 

4

36
 

3

36
 

2

36
 

1

36
 

 

 

  

       

       

      

     

3.5 3.5 7

35 35
var var var 2var 2

12 6

E Y E X X E X E X

Y X X X
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Linear combinations of independent normal distributions 
 
(1)  Scaling and translation of a normal distribution 

If X is normally distributed then so is aX b , where a and b are constants. 

         2 2 2, ,X N aX b N a b a  

 

Example (7) 

A company produces plastic wallets.  Let X represent the width of the wallets.  It is given 

that X is normally distributed with mean 32 cm and variance 0.4 cm.  The machine 

producing these wallets is recalibrated to give a new width  2 10 cmY X .   

(a) State the distribution of Y.   

(b) Find the probability that the new wallets will be within 1.0 cm of their expected 

mean.  Give your answer to 2 significant figures. 

 

Solution 

   

   

   

   

 

 

 

     

   





2

32,0.4

32 var 0.4

2 10

2 10 2 32 10 54

var 2 var 4 0.4 1.6

54,1.6

a X N

E X X

Y X

E Y E X

Y X

Y N

 

   

   

 

   




 


  

      

    

         

We require 53 55

1
0.791

1.6

0.791 0.791 0.7855 from tables

54 55 0.7855 0.5 0.2855

53 55 2 54 55 2 0.2855 0.571 0.57  (2 s.f.)

b P Y

x
z

P Z

P Y

P Y P Z

 

 

(2)   Linear Combinations of independent normal distributions 

If           22,  and ,X N Y N  have independent normal distributions, then aX bY  

is also normally distributed and 

     

     

  

  2 2

 

var var var

E aX bY aE X bE Y

aX bX a X b Y
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Hence  

        
22 2 2~ , aX bY N a b a b  

 

Example (8) 

A certain manufacturing process depends on the insertion of a metal rivet into a metal 

gasket. 

 

 

 

In order to create a high seal the gasket is heated. The initial diameter of the gasket, in 

mm, is  ~ 20.000, 0.001X N . The external diameter of the rivet, in mm, is 

 ~ 20.080, 0.001Y N  

(a) Find the probability that a randomly selected rivet would fit inside a randomly 

selected gasket without heating.   

(b) The gasket is heated so that it expands by 1%.  Find to 4 significant figures the 

proportion of rivets that fit the gasket.   

(c) What percentage of rivets and gaskets randomly chosen will produce a high seal 

first time?  Give your answer to 3 significant figures. 

 

Solution 

(a)    We consider the distribution X Y  

     

     

      

     

20.000 20.080 0.080

var var var 0.001 0.001 0.002

E X Y E X E Y

X Y X Y
 

  Then  ~ 0.080, 0.002X Y N  

We require        0P Y X P X Y  

X  Y
0.080

z

P X  Y ( ) > 0

0
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The corresponding Z value is given by 

 

     




 
  

   

0 0.080
1.788

0.002

1.788 0.0368 3 s.f.

x
z

P Y X P Z

 

(b)  The heating corresponds to scale factor 1.01.  Let X  be the diameter of the 

gasket after heating then   1.01X X . 

     

   

   

 

  

 



1.01

1.01 20.000 20.080

20.2 20.080

0.12

E X Y E X E Y

E X E Y

 

     

     

 

   

 

  



2

2

var var var

1.01 var var

1.01 0.001 0.001

0.0020201

X Y X Y

X Y
 

   

 


    

 
     

0

0 0.12
2.6698... 2.670 3 d.p.

0.0020201

P Y X P X Y

x
z

 

X   Y 
0.12

z = 2.670

P X  (  )  Y  > 0

0
 

     2.670 0.9962 4 s.f.P Z  

  

  





(c) Proportion 1 proportion not sealing when cold  proportion not sealing when hot

1 0.0368 0.0038

0.9594

95.9%  (3 s.f.)
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Proofs 
 

This section is optional.  We will prove here the formulae for expectation and variance under a 

scaling and translation.  We will then prove the formulae for the linear combination of 

independent random variables.   

 

Expectation and variance under a scaling and transformation 

Let X be a random variable with expectation  E X .  Let a and b be constants. Then 

   
   

  

  2var var

E aX b aE X b

aX b a X
 

We will prove these formulae separately for a discrete probability distribution, and then for a 

continuous one. 

 

Discrete probability distribution 

Let X be a random variable with expectation  E X  and variance  Var X .  Let a and b be 

constants.  The definition of the expected mean is   E X xp  where the expression xp  means 

the product of the value and its probability and the expression  indicates that we should sum 

all of these. 

   

 

 

   

  

 

 

 

   



 
 

 1 is the law of total probability, and 

E aX b ax b p

a xp bp

a xp bp

a xp b p

a E X b p E X xp

 

 

To prove the formula for variance, note that 

         
2 2 2 2 2E aX E a X a E X  

Then 

     

    

    
 

       

 

 



22

22 2

2 2

2

var

var

aX E aX E aX

a E X aE X

a E X E X

a X
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Continuous probability distribution 

Let X be a continuous random variable with probability density function  p x . Then the 

expectation and variance of X are defined to be 

   




 E X xp x dx  

   

     







    

2 2

22

E X x p x dx

Var X E X E X

 

For the expectation of aX b  we have 

     

   

    

   

   

 













 

 

 

 

   

 

 

 

 

 







 

 

E aX b ax b p ax b dx

ax b p x dx

axp x bp x dx

axp x dx bp x dx

a xp x dx b p x dx

aE X b

 

       

     

     

   

    
 









  

  

       

      

  

    

    







  

22

22 2 2

2 2

22 2

22 2

2

var

2

2

2

var

aX b ax b p ax b E aX b

a x abx b p x dx aE X b

a x p x dx ab xp x dx b p x dx

a E X abE X b

a E X E X

a X

 

 

Thus, for any random variable, whether discrete or continuous 

   
   

  

  2var var

E aX b aE X b

aX b a X
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Linear combinations of independent random variables 

To prove: Let X and Y be independent random variables with expectations     and E X E Y  and 

variances    var  and varX Y  respectively.  Then 

       E X Y E X E Y          E X Y E X E Y  

       var var varX Y X Y         var var varX Y X Y  

 

For the expectation 

     

     

       

   

 
     

 

 
        

 

   
            

   

 
     

 

 

 

   

 

all all 

all all 

all all all all 

all all 

  

Independent events

Linear in  and 

x y

x y

x y x y

y x

E X Y x y P X x Y y

x y P X x P Y y

x P X x P Y y y P X x P Y y x y

x P X x P Y y y P X

and

   

           

         

   
 

  
   

    

 
      

 

      

  
   
 

 

  

 



all all 

all all all 

all all 

all 

We can change the 

sums around

 is a scalar

1

law of total probability

x y

y x x

y x

x

x P Y y

E X P Y y E Y P X x E X x P X x

E X P Y y E Y P X x E X

P X x
E X E Y 



 

From this 

 

     
       

        

  

  

2 2 2

2 2

2 2

2

2

2

E X Y E X XY Y

E X E XY E Y

E X E X E Y E Y

 

 

For the variance 

     

            

               

       

   

         

    

           

         

 

22

22 2

2 22 2

2 22 2

var

2

2 2

var var

X Y E X Y E X Y

E X E X E Y E Y E X E Y

E X E X E Y E Y E X E X E Y E Y

E X E X E Y E Y

X Y
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Example (8) 

By adapting the proofs above, show that  

       E X Y E X E Y  

       var var varX Y X Y  

Solution 

     

     

       

   

 
     

 

 
    

 

   
        

   

 

 

 

   

all all 

all all 

all all all all 

  
x y

x y

x y x y

E X Y x y P X x Y y

x y P X x P Y y

x P X x P Y y y P X x P Y y

E X E Y

and

 

 

       

        

  

2 2 2

2 2

2

2

E X Y E X XY Y

E X E X E Y E Y

 

     

            

                
       

   

         

    

           

         

 

22

22 2

2 22 2

2 22 2

var

2

2 2

var var

X Y E X Y E X Y

E X E X E Y E Y E X E Y

E X E X E Y E Y E X E X E Y E Y

E X E X E Y E Y

X Y

 

 


