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Functions and continuity 
 
 
 
 
 

Functions 
 
A function is a mapping from one set (called the domain) to another set (called the co-domain).  

That is, a function is a rule taking you from one number to another.  Functions can be written 

explicitly by specifying exactly which numbers are mapped to which.  For example 


 
 

0 3

: 1 7

2 10

f  

The symbol 0 3 is read "0 maps to 3".  It is only possible to specify finite functions by such an 

explicit rule, or mapping diagram.  Often we define a function by an implicit rule indicating the 

process that takes you from a number in the domain to a number in the co-domain. 


  

 
2

:
3 2

f
x x

 

This is read “f is the function from   to  such that x maps to 23 2x .”  The symbols 

 23 2x x    2and  3 2f x x  are interchangeable.  For a given application of a rule, the number 

in the domain is called the argument of the function and the number to which it is mapped by the 

rule is called its value.  For example 

   



23 2

(1) 5

f x x

f
 

Here 1 is the argument and 5 is the value.  The image set is the set of all numbers in the co-

domain that can be values of the function.  In set notation 

   Image :y y f x  

The image may be equal to or smaller than the codomain.  For example 

   
  



 
  

2
Domain = Codomain =  Image = :  and 0f x x x x

x x
 

We could have written the image as [0, ) .  This uses the convention that a square (closed) 

bracket means that the point next to it is included in the set, and a curve bracket means that the 

point next to it is not included.  The symbol   is used to denote infinity; as infinity is not a 

number then it cannot be included in the set, so we use a curved (open) bracket next to it. 
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Graph 
 

The graph of a function f from   2 to  is the subset of  

     2, :x y y f x  

So it is a set of points in the x,y-plane.   To a point of x there corresponds a point of y.  This is a 

formal definition of a graph.  By this stage the student should be very familiar informally with 

graphs and should be used to sketching the graphs of functions. 

 

Example (1) 

Constant functions map every point of the domain to a fixed point in the codomain. Let  

   3f x  

(a) Describe as a set the graph of f. 

(b) Sketch the graph of f. 

 

 Solution 

(a) The graph is the set   ,3 :x x  

(b)  

x

y

3

 

 

Example (2) 

Affine functions are functions that take the form 






 


f
x ax b

 

where a, b are fixed real numbers and  0a .  Their graphs are straight lines. Let  

   3 1f x x  

(a)  Describe as a set the graph of f. 

(b)  Sketch the graph of f. 

 

 Solution 

(a) The graph is the set    ,3 1 :x x x  

(b) It is the straight line through the point  0,1  with gradient 3. 
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(0,1)
1

3

 

 

Example (3) 

Quadratic functions take the form 




 

 
 2

f
x ax bx c

 

where a, b, c are fixed real numbers and  0a .  Let      2 2 3f x x x  

(a)  Factorise f and put f in completed square form. 

(b)  Sketch the graph of f. 

 

Solution 

(a)           2 2 3 1 3f x x x x x  

  Completing the square 

              
22 2 2 22 3 2 1 1 3 1 4f x x x x x x  

(b) This is a parabola with axis of symmetry  1x , minimum point   1, 4  and 

cutting the x-axis at   3 and 1y y  so its sketch is 

(0,-3)
x

(0,1)

(-1,-4)

y
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Analytic methods of sketching graphs 
 

Polynomial functions take the form   
    1
1 1 0

n n
n nf x a x a x a x a  where 1 1 0, , ... , n na a a a  are 

fixed real numbers.. You should be familiar by this stage with analytic methods of sketching 

polynomial functions – that is, by using the differential calculus to find their turning points and 

to classify these as maxima or minima. 

 

Example (4) 

Use analytical methods to sketch the graph of      2 3  3 4 6f x x x x . 

 

 Solution 

 

 
 

 

   

    

  

   
     

 

 

 



2 3

2

2

2

2

2

2
2 6

2
3

  3 4 6

For turning points 4 12 3 0

3 12 4 0

12 144 48 12 96 12 4 6 2 6
2 0.367 or 3.633 3.d.p.

6 6 6 3
When 0.367, 2.291 3.d.p.

When 3.633, 19.710 3.d.p.

12 6

0 So 
x

y x x x

dy
x x

dx

x x

x

x y

x y

d y
x

dx

d y
x

dx

 

 

  
2

2
2 6

2
3

2 6
2  is a maximum point

3

2 6
0 So 2  is a minimum point

3
x

d y
x

dx

 

(0.367, 2.291)
x

(3.633, 19.710)

y
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Inverse of a Function: monotone increasing or decreasing 
functions 
 

If a function f maps x to y, then the inverse of that function, written 1f , maps y to x. The inverse 

of a function reverses the process represented by that function.   However, not all functions have 

inverses. This is because functions can be ''many-one'' or ''one-one''. An example of a many-one 

function is 






 
2

f
x x

 

y

x

y = x 2

a a

 

 

This is many-one because there are two values in the domain giving the same value in the co-

domain:  ( ) ( )f a f a .  A many-one function is a function such that there are two or more 

arguments in the domain giving the same value in the co-domain.  A many-one function cannot 

have an inverse because the arguments of the ''inverse'' would have more than one value, and a 

function must specify just one value for each argument.  A one-one function specifies for each 

argument just one value.  For a function to have an inverse it must be one-one.  A one-one 

function is either always increasing or always decreasing. 

 

An always-increasing function is also called a monotone increasing function, and an always-

decreasing function is also called a monotone decreasing function. To prove that a function is 

monotone increasing or decreasing we use analytic methods; that is, it is an application of the 

differential calculus.  For a function without points of inflexion to be monotone increasing then 

its derivative is always positive. 
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   
   

   
   

 

  

 

  

is monotone increasing   for all : either 0  

or if  0 then 0

is monotone decreasing   for all : either 0 

or if  0 then 0

f x x f x

f x f x

f x x f x

f x f x

 

As the definition indicates we will count a function as monotone increasing if it is increasing 

throughout the domain except, perhaps, where it has a point of inflexion. 

 

f x( )

y

x

f x( ) > 0

 

 

Example (5) 

Prove that    3f x x  is a monotone increasing function. 

 

 Solution 

 
   

 

   

   



23 0 for all  except 0

At 0, 0 0 and 0 0 so this is a point of inflexion.

Hence  is monotone increasing throughout the domain .

f x x x x

x f f

f x

 

 

A one-one function can be created from a many-one function by restricting the domain. This 

means diminishing the size of the domain so that the function becomes increasing or decreasing 

on the reduced domain. For example 
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y

x

y = x 2

y

x

y = x 2

 






 
2

:f
x x

       
                     RESTRICTTION

          
  




 
2

:g
x x

 

 

The domain is restricted to contain only positive real numbers. The inverse of this restricted 

function  2( )g x x is called the square root. 

 


 




 1 :g
x x

 

 

 

The reciprocal function - singularities 
 

The reciprocal function takes the form 







 

 1
0

f
x x

x

 

The graph of the reciprocal function is the rectangular hyperbola. 
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x

y

 

 

The graph illustrates important points about this function.  At x = 0 the function is undefined 

because we cannot divide by zero.  The expression
1

 
0

 is meaningless.  The graph shows this 

because around the origin the function tends to   as we approach x = 0 from the negative side, 

and tends to  +  as we approach x = 0 from the positive side.  We say that there is a singularity 

of the function f at x = 0, which means that f is undefined there.  The y-axis (x = 0) is an asymptote 

of f, but in the neighbourhood of the origin, x = 0, the value of  y f x  jumps from   to + .  
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Functions defined piecewise on their domain 
 

Regarding the reciprocal function 







 

 1
0

f
x x

x

 

we could define a function that took a value at x = 0.  For example 



 

 

 



:

1
if 0

0 if 0

g

x x
x

x

 

This definition fills in the missing gap when x = 0, though it does so in an arbitrary way and we 

could have specified that g took any other value when x = 0. Furthermore, the definition of g does 

not “bridge the gap” created by the singularity at x = 0 for the reciprocal function f.  There is no 

way to join the two halves of f together so that the singularity is removed.  When there is a gap 

like this we say that the function is discontinuous.  When there is no “gap” like this, then the 

function is continuous.  Whether a function is continuous or discontinuous is important in 

mathematics and we need to develop rules for determining this property. 

 

The function g has also been constructed from two definitions.  Each definition applies to a 

different part of the domain of g.  So   1g x x  on all values of the domain   with the exception 

of x = 0, and    0g x  if x = 0.  The function g comes in two pieces and is said to have been 

defined piecewise on its domain.  Intuitively, a function is continuous if its graph consists of one 

unbroken curve.  If you were drawing the graph with a pencil you would draw the graph as one 

curve or line without lifting your pencil.  This is the intuitive notion of a continuous graph.  A 

function can be discontinuous in basically two different ways.  Firstly, when a function contains a 

reciprocal, then it may have a singularity.  The singularity means that the graph has asymptotes 

around the singularity, so it is not possible to join the two halves of the graph together around 

the singularity.  Singularities create discontinuous graphs.  Now there is a second way in which 

continuity can fail. When we define a function piecewise on its domain, we are joining two 

functions together.  In that case, the functions may either join up continuously, or there may be a 

discontinuity.  This is best shown by example. 

 

Example (6) 

The functions g and h are defined piecewise on the domain   as follows 

 
 

 
 

       
 

     

1 if 0 1 if 0

1 if 0 2 if 0

g x x x h x x x

g x x h x x
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Sketch the graphs of g and h and explain intuitively why g is continuous and h is not. 

 Solution 

The following sketches show g and h. 

 

g x( )

x
1

y

h x( )

x
1

y

2

 

 

The sketch for g shows that g remains as an unbroken “curve” – the two halves are joined 

together continuously at x = 0, and g is continuous throughout its domain.  The sketch for h 

employs the convention that an unfilled circle is used to represent a point that is not included in 

the graph, and a filled circle represents a point that is included in the graph.  When x = 0 the 

function h takes the value 1 because     1 if 0h x x x , so the point  0,1  is included in the 

graph and is shown by the filled circle.  When  0x  the function h is defined by    2h x  and h 

takes the value 2 at every point when  0x  except x = 0.  So the point  0,2  is not included in the 

graph and is represented by the unfilled circle.  The graph of h shows intuitively that h is 

discontinuous at x = 0; the graph “jumps” from the value 2 to the value 1 just around x = 0.  (We 

say, “in the neighbourhood of x = 0”.)  So h is a discontinuous function because the two pieces of h 

have not been joined together in a way that makes it continuous. 

 

However, in this example we are using “intuitive” arguments to prove that one function is 

continuous and another is discontinuous in the neighbourhood of some point.  We need to replace 

the intuitive argument by something more analytical.  For this purpose we will need to introduce 

the idea of a limit.  However, when dealing with arguments about limits we employ two types of 

argument: formal or rigorous arguments and informal arguments.  The formal arguments are 

quite technical, and in this chapter we will in fact use primarily informal arguments about limits 

to make statements about the continuity of functions.  Yet, when we introduce the idea of a limit 

it is useful to give some idea of what the formal definition of a limit might be.  Arguments using 

formal limits are not dealt with here. 
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Limits 
 

Let us continue to use the functions g and h defined above. 

 
 

 
 

       
 

     

1 if 0 1 if 0

1 if 0 2 if 0

g x x x h x x x

g x x h x x
 

The intuitive idea behind our arguments about the continuity or discontinuity of these functions 

involved the notion of a limit.  As we get closer and closer to x = 0, the value of  g x  gets closer 

and closer to 1, whether we approach x = 0 from the negative end of the x-axis or from the 

positive end of it.  At x = 0 it is unambiguous that    1g x . 

 

g x( )

x

1

y

0 x

g x( )

g x( )

x

y

0x

g x( ) = 1

 

 

For this argument we write informally 

       
  

0 0
lim 1 lim 1 1 1

x x
g x g x g  

Note here the use of  and + symbols in connection with the symbol for the limit.  These indicate 

from which side of the given x-value we are approaching; the minus () indicates we approach it 

from the negative end of the x-axis and the plus (+) sign indicates that we approach it from the 

positive end of the x-axis.  Because the two limits converge on the same value, the function  g x is 

continuous. 

 

Before we move on, it is useful to briefly consider what the formal definition of a limit might be, 

and how the formal argument would go.  Limits are primarily defined for sequences of numbers.  

For example, you may be familiar with the sequence defined by the general term 

   
 

1
1

n

nu
n

 

The sequence is generated by substituting successive values of n 
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    
 

     
 

     
 

1

1

2

2
2

3

3
3

1
1 2

1

1
1 1.5 2.25

2

1
1 1.333... 2.370...

3

u

u

u

 

This sequence can be shown to converge on a single value, and is the definition of the important 

irrational number e. 


    
 

1
lim 1

n

nn
e u

n
 

As n gets larger and larger (approaches infinity) the value of 
   
 

1
1

n

nu
n

 gets closer and closer to 

the number  2.71828...e  .  We can write this also as 

     
 

1
1 as   

n

e n
n

. 

This notation still does not capture formally the notion of getting “closer and closer”.  This notion 

involves the idea that the difference between the value of the sequence and the limit becomes 

smaller and smaller as the sequence progresses.  Let us use l to stand for the limit, and the Greek 

letter   (epsilon) to stand for a small number.  Let nu  stand for the nth term of the sequence.  

Then we are saying that as n gets larger and larger 

   whatever nu l  

That is, however, small we make   the value of nu l  is smaller than it, provided that n is large 

enough.  So this is the basis of the formal definition of a limit 

 

 

Formal definition of a limit 

A function  f x  tends to the limit l as x becomes larger and larger (‘tends to infinity’) if, when  

is a given positive number, however small, a number N can be found, depending on  such that 

     whenever f x l x N  

This is abbreviated to 

 


lim
x

f x l  

In this context we are discussing continuity, and the idea that a function defined piecewise may 

not converge uniquely on a single value, so that if we were drawing the graph of that function we 

would have to lift the pencil at that point.  To capture this idea we modify the above definition as 

follows. 
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Formal definition of the limit of a function at a point x = a 

A function  f x  tends to the limit l as x gets closer and closer to a  if, when  is a given positive 

number, however small, a number   can be found, depending on  such that 

       whenever f x l x a  

This is abbreviated to 

 


lim
x a

f x l  

 

The following graph illustrates this definition. 

 

f x( )

x

y

x a

f x( )

f a( )




 

 

 

Informal arguments 
 

In this chapter “informal” arguments will suffice.  That is, we do not use the formal definition of a 

limit given above, for the reason that the work involved tends to be nasty and often quite 

unnecessary.  Informal arguments are based on the idea that what is obvious is true.  For example, 

it is obvious when  g x  is defined by 

 
 

   


 

1 if 0

1 if 0

g x x x

g x x
 

that  g x  converges on the value 1 from both directions; that is 

     
 

0 0
lim 1 lim 1

x x
g x g x  

However, when  h x  is the function 
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 
 

   


 

1 if 0

2 if 0

h x x x

h x x
 

we have 

     
 

0 0
lim 2 lim 1

x x
h x h x  

 

h x( )

x
1

y

2

0 xx

h x( )
h x( )

 

 

Since       


0 0
lim lim

x x
h x h x  this proves informally that h is not continuous at x = 0. 

 

 

 

Continuity 
 

We will now explicitly define continuity.  In this definition the phrase “from above” means that we 

replace the condition  x a  in the definition of a limit by   0 x a .  That is 

 

A function  f x  tends to the limit l from above as x gets closer and closer to a if, when  is a 

given positive number, however small, a number   can be found, depending on  such that 

        whenever 0f x l x a  

This is abbreviated to  
 

lim
x a

f x l  

 

The phrase “from below” means that we replace  x a  in the definition of a limit by 

  0 a x .   This is abbreviated to  
 

lim
x a

f x l  
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Continuity 

The function  f x  is continuous when x a  if  f x  tends to a limit l as x tends to a from above 

and to the same limit l as x tends to a from below, while   f x l  when x a . 

 

In conclusion, to show that a function is continuous at a point a we have to show 

           
   

  1 lim 2 lim 3
x a x a

f x l f x l f a l  

 

 

 

Combining limits 
 

We can combine limits in much the same way that we combine numbers. 

 

Scalar multiple of a limit 

Multiplying a function by a constant has the effect of multiplying the corresponding limit by the 

same constant.  In symbols, let a be a real number, then 

       If    as    then asf n l n af n al n  

Alternative notation 

    
 

lim iml
x a x a

bf x b f x  

 

Sum of limits 

The limit of a sum (or difference) of two limits is the sum (or difference) of the limits. 

   
   
   

   

 


1 1 2 2

1 2 1 2

If    as    and    as    

then as

f n l n f n l n

f n f n l l n
 

Alternative notation 

        
  

  lim lim lim
x a x a x a

f x g x f x g x  

 

Product of limits 

The limit of a product is the product of the limits. 

   
   
   

   

 


1 1 2 2

1 2 1 2

If    as    and    as   

then as

 f n l n f n l n

f n f n l l n
 

Alternative notation 

        
  

  lim lim lim
x a x a x a

f x g x f x g x  
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Quotient of limits 

The limit of a quotient is the quotient of the limits. 

   
 
 

   

  

 



1 1 2 2

1 1
2

2 2

If    as    and    as    

then as   provided that 0

f n l n f n l n

f n l
n l

f n l

 

Alternative notation 

 
 

 
   

 


     
  

lim
lim  provided that lim 0

lim
x a

x a x a
x a

f xf x
g x

g x g x
 

 

Example (7) 

Evaluate   


  
 

  

2

20

3 2
lim

3 2x

x x

x x
  

 

 Solution 

 
 

   
   






  

  

   

   

   
         

 
    

 


 

2
2

2 2

2

2

0
0

0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

lim 3 23 2
lim Quotient rule

3 2 lim 3 2

lim lim 3 lim 2
Sum rule

lim lim 3 lim 2

lim lim 3 lim lim 2
Prod

lim lim 3 lim lim 2

x
x

x

x x x

x x x

x x x x

x x x x

x xx x

x x x x

x x

x x

x x x

x x x
  

 
    


uct and multiples rules

0 0 2
Informally evaluating the limits

0 0 2
1

 

 

 

Quotients 
 

When one function is divided by another, then we have the possibility of singularities.  A 

singularity may occur whenever a value of x would lead to a zero in the denominator of the 

quotient.  Let  

   
 


f x

h x
g x

 

Suppose that when x = a the function    0g x  and suppose also that at this point    0f x . Then 

at this point the quotient cannot be defined and  h x  cannot take a value.  Strictly speaking the 

point x = a cannot belong to the domain of  h x  and we should specify that  h x  is defined on a 
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domain that does not include x = a.  Alternatively, we could add a value for  h a  by defining it 

piecewise; for example, we could arbitrary set    1h a  and define the function by the following. 

   
 

 

 

 

whenever 

1 if 

f x
h x x a

g x

h x x a

 

In practice we usually speak of a function  h x  being defined on the whole domain (say  ) and 

assume that it is clear from context that    
 


f x

h x
g x

 is undefined at any value where    0g x . 

 

Example (8) 

Name any points at which the following functions are discontinuous 

(a) 
 2 3 2

x

x x
  (b) 

1

sin x
 

 

 Solution 

(a) The function 
 2 3 2

x

x x
 will be discontinuous (and undefined) whenever the 

denominator  

       2 3 2 1 2x x x x  

is zero.  That is, at x = 1 and x = 2.   

(b) The function 
1

sin x
 will be discontinuous (and undefined) whenever the 

denominator sin x  is zero.  That is at  for 0, 1, 2,....n n     

 

As (a) above indicates there exists the possibility that a quotient may have a limit even at a point 

where the denominator takes a zero value; that is, if the numerator simultaneously is zero at this 

point.  However, this alone would not be enough to show that a quotient was continuous, because 

the function has to converge from above and below on zero, and not just equal zero at that point.  

Nonetheless, here is an important example of when a quotient has a limit and is continuous at a 

given point, even though the denominator is zero at that point. 

 

Example (9) 

Prove that the function    sin x
f x

x
 is continuous at x = 0.  Furthermore, show that the 

limit as  0x  of 
sin x

x
is unity.  That is 



   
 0

sin
lim 1
x

x

x
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Proof 

AO

B

C
P

x

 

 

In the right-angled triangle OAB let OA be of unit length, and the angle BOA  be x 

radians, where x is small.  Let AC be perpendicular to OB, and AP be an arc of a circle.  

Then by geometric intuition 

 arc AC AP AB  

But   sin ,  arc ,   sinAC x AP x AB OB x  

Hence 

 sin sinx x OB x  

 1
sin

x
OB

x
 

As  0x , OB tends to equality with OA, hence 




0
lim 1
x

OB  

We have 

 
 

0 0
1 lim lim

sinx x

x
OB

x
 

That is 


 

0
1 lim 1

sinx

x

x
 

Hence 




0
lim 1

sinx

x

x
 

 

This result is required when it is proven that the derivative of sin x is cos x. 
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Image set 
 

We may wish to know what the image of a subset A of the domain of a function is.  The image of a 

set A under the function f is the set of all values to which elements in A are mapped by f.  The 

symbol  f A  is used to denote this set and is defined as 

       :   provided that  is definedf A f x x A f x  

We add the proviso that  f x  must be defined for all values x A .  For example, the function 

   1
f x

x
 does not take a value when x = 0, because that is equivalent to dividing by zero. 

 

Example (10) 

Find the image under f of the set A given by interval  1,1  when    1
f x

x
. 

 

 Solution 

The graph of    1
f x

x
 on the set A is 

 

x

y

A

f A( )

f A( )

1

1

+1

+1

 

 

As the graph illustrates 

 
 

 

 

 

 

 



lim

lim

 is undefined when 0

x a

x a

f x

f x

f x x
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On the interval  [ 1,0)  is a monotone decreasing functionf x , and on the interval (0,1]  

 f x  is also monotone decreasing.  We can show this by showing that the first derivative 

  2, 0f x x x     never takes zero, so the graph of  f x  has no turning points; 

furthermore,    0f x  for all values of x   0x   so  f x  is always decreasing.  Since 

 
 



  

1 1

1 1

f

f
 

the image of A under f is the set 

      [ 1, ) [1, )f A  

 

 

Inverse image 
 

When a function f has an inverse 1f  then the image of a set A under the inverse may also be 

found.  This is the set 

        1 :  is defined and f B x f x f x B  

 

Example (11) 

Find the inverse image of the set    0,1B  of the function    sinf x x  

 

 Solution 



y

x

+1

1

2

2



 

 

The inverse of f is the inverse of the restricted function  

1

, 1,12 2:
sin

f
x x

         
 

 

Its inverse is 
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1

1

1,1 ,2 2
sin

g
x x

 




       
 

 

On the set    0,1B  the image set is 

      1 :  is defined and 

0, 2

g B x g x g x B



  

   
 

 

 

Odd and even functions 
 

The graphs of some functions exhibit symmetry.  For example  cosy x  is symmetrical about the 

y-axis. 

A

cos A

A

cos ( )A

y

x

 

 

Such functions are said to be even or symmetric functions.  The formal criterion for an even 

function is 

        is even  f x f x f x  

A function that is not even may yet be “almost” symmetrical.  For example, in the graph of 

 siny x  

A

sin A

A

sin ( )A

y

x
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If we were to reflect the negative part in the x-axis we would obtain an even function. 

 

y

x

 

 

Example (12) 

Prove that the function 

 
 

  


  

sin if   0

sin if   0

f x x x

f x x x
 

is an even function. 

 

Solution 

 Suppose  0x  then   0x  and           sin sinf x x x f x  

 Suppose  0x  then   0x  and           sin sinf x x x f x  

 In either case 

     f x f x  

 So f is an even function. 

 

Functions like    sinf x x  that can be turned into even functions in this way are called odd or 

anti-symmetric.  The formal criterion for an odd function is 

         is odd  f x f x f x  

 

Example (13) 

Prove that the function 

       1 1f x x x x  

is odd. 
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Solution 

 

         
     

   
 

1 1

1 1

1 1

f x x x x

x x x

x x x

f x

      

    

   

 

 

 So f  is odd. 

 

Functions that do not match either criterion are called neither odd not even. 

 
 
 
 
 
 


