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First Order Linear Differential Equations Involving an 
Integrating Factor 

 
 
 
A differential equation is an equation involving the derivatives of functions – that is, 
expressions of the form: 
 

2

2
,   

dx d x

dt dt
 

 
A differential equation is called first-order if the highest derivative is a first derivative – 
that is, of the form: 
 
dx

dt
 

 
For a certain class of first-order differential equations, the function that gives rise to the 
equation can be found by the technique of the separation of variables.  That technique is 
described in another section of this course. 
 
In this section we investigate techniques for the solution of first-order differential 
equations where the variables are not separable.  The general form of such an equation is: 
 

   dy
l x y k x

dx
    

 
To be first order the highest power of y must also be first-order – that is, expressions of 
the form y2 are not dealt with here.  The expressions l(x), k(x) denote functions of x that 
do not involve y.  The expression is linear because it involves the sum of expressionseach 
of which is linear.  The variables cannot be separated because of the presence of the term, 

 l x y . 

 

   

2

2

An example of a first-order linear differential equation is:

3

Here, 3 and .  We will integrate this expression later on.

x

x

dy
y e

dx

l x k x e

 

 
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Integration of these equations is achieved by reversing the process of differentiation when 
that differentiation is by means of the Product rule.  Recall that differentiation by means 
of the Product Rule is given by: 
 

 
 
f g f g f g

d uv du dv
v u

dx dx dx

      

   
 

 
For differentiation, the Product Rule is most conveniently expressed in function notation 
– that is, in the notation of the first of these expressions.  However, when reversing the 
process in the technique of the integrating factor for the solution of first-order differential 
equations, which we are studying here, we use the Leibniz notation.  That is, the second 
form of notation. 
 

 d uv du dv
v u

dx dx dx
     

 

 

 

Thus, supposing we have a differential equation of the form:

Then we can integrate directly to

 

du dv
v u k x

dx dx

u v k x dt

   

  

 

 

 The expression  is called an exact first-order differential equation.
du dv

v u k x
dx dx

     

 
It is exact because it can be directly integrated as the reverse process of differentiation by 
the Product Rule. 
 

Example 
 

2 22

integrates directly to

xdy
xy y e

dx
 
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   

2 2

2 2

2

 

1

2

Here  ,  

x

x

xy e dx

xy e A

u x x v x y



  

 


 

 

1,  2
du dv dy

y
dx dx dx

   

 
Integrating Factor 
 
Sometimes a first-order differential equation is not exact, but it is possible to “spot” a 
function that, if used to multiply every term, will give an exact differential equation.  This 
function is called an integrating factor. 
 
For example, 
 

2

2 xdy
x y e

dx
   

 
This is not exact, but multiplying every term by the integrating factor, x, gives: 
 

2

2 2

2

2

2

1
Then,  

2

x

x x

dy
x xy xe

dx

x y xe dx e c

 

  
 

 
Another example is: 
 

 2

2

2

2

0

1The integrating factor is 

1
Then,    0

Hence,  0

dy
x y y

dx

y

x y dy

y dx y

x
y

y

  


  

 
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Recognising integrating factors directly can be tricky!  However, we shall introduce a 
technique that finds the integrating factor without the need for inspired intuition!  But the 
technique of direct integration as the inverse of the Product Rule is the fundamental 
concept here, and awareness of this can save time, and be particularly important in other 
applications. 
 

Example 
 

Find the general solution of the differential equation:

cot .
dy

y x x
dx

 
 

 
cosIt must first be appreciated that cot  can be written as , and then sin

that sin  is the integrating factor:

cos

sin

sin cos sin

sin sin  

xx x
x

dy x
y x

dx x
dy

x y x x x
dx

y x x x dx

 

  

  

 

 

   

   

The integral of sin  is found by integrating by parts.  The parts formula is:

So, let:

,    sin

then,

1,   cos

sin  cos cos  cos sin

Hence,   sin cos

x x

fg fg f g

f x x g x x

f x g x x

x x dx x x x dx x x x c

y x x x

  

 

   

        

  

 

 
sin x c

 

 
 
General technique for integrating first-order differential equations 
 
We now describe the general technique for integrating first-order differential equations.  
Using this technique we would be able to integrate the above example without the use of 
direct intuition. 
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   

   .

If a first-order differential equation can be put into the form

Then the integrating factor is 
l x dx

dy
l x y k x

dx

p x e

 



 

 
Then, multiplying the differential equation by the integrating factor gives: 
 

         

     

. . .

. .

Then direct integration gives:

.

l x dx l x dx l x dx

l x dx l x dx

dy
e l x y e k x e

dx

ye k x e dx

       

  

 

 

   .
We can show that  is the integrating factor since,

l x dx
p x e  

       . . .l x dx l x dx l x dxd dy
ye e ye l x

dx dx
      
 

 

 
Example 
 
An example of the use of this formula is: 
 

2Solve:  3 xdy
y e

dx
   

 
 

  3. 3

3 3 2 3

3 5

3 5

Here, 3,

Then  3

1

5

dx x

x x x x

x x

x x

l x

p x e e

dy
e ye e e

dx

ye e dx

ye e c



  

  

 

  


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 

 
   

cot .

ln sin

In the case of cot

The integrating factor is 

cos
Writing cot  as 

sin

cot ln sin

Hence, sin .

We solved this problem earlier in this section, and having found the 

integra

x dx

x

dy
y x x

dx

p x e

x
x

x

x x

p x e x

 





 



ting factor, the rest of the solution is identical to the last.

 

 
 
Initial Conditions 
 
The solution to a first-order differential equation introduces a constant of integration. 
Consequently, the solution is a one-dimensional family of functions differing from each 
other by this constant of integration. 
 
Hence, substituting particular values of the dependent and independent variable solves a 
particular problem in physics that gives rise to a differential equation of this type. 
 

Example 
 
Find the particular solution of 
 

2 2 1
dy

y x
dx

   

 
given that 1 when 2y x  . 
 

2 2

3 3

1.

3 3

y dy x dx

y x
x c

 

  

 
 

 
For the particular solution, we substitute 1,  2y x  . 
 
Then 
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1 8
2

3 3
7 6 13

3 3 3

c

c

  

    
 

 
Therefore, 
 

3 3 1
4

3 3 3

y x
x    

 


