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Solution of first order differential 
equations by separation of variables 
 
 

 
Prerequisites 
 

You should already be familiar with direct integration and with integration by substitution. 

 

 

Differential equations 

 

In the relationship  x f t  we express one variable x as a function of another t.  Changes in the 

variable t bring about changes in x.  If we think of x as changing as a consequence of some change 

in t then x is called the dependent variable.  The variable that does not change, but rather causes 

the change, is called the independent variable.  A differential equation is an equation involving 

such symbols as  

       
2 3

2 3

dx d x d x
f t f t f t

dt dt dt
 

and so forth.   In a differential equation we have an equation in the dependent variable x given in 

terms of various rates of change of the independent variable t.  An example of a differential 

equation is    
2

2
3 5 3 sin 0

d x dx
x x

dt dt
.  The general aim is to find exact solutions to such 

differential equations.   The exact solution is a family of functions of the form   x f t c , where 

c is a constant that satisfies the differential equation.  Exact solutions to differential equations 

cannot always be found.  When they cannot be found, the solution may be approximated by a 

numerical method.  Differential equations differ from each other in various systematic ways, and 

their exact solutions, when they can be found, differ accordingly.  A differential equation is called 

first-order if the highest derivative is a first derivative – that is, of the form 
dx

dt
. 

 

 Example (1) 

Which of the following are first order differential equations?  State for each the 

independent and dependent variable. 
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 

 

 



   



2

2

2

5

3 5 3 sin 0

dx
a

dt

d x dx
b x x

dt dt

dP
c P

dt

 

 
 

 

 

  

2

2

24 1

d y
d kx

dx

ds
e s s

dt

 

 

 Solution 

 

 

 

 

 

 



   



 

  

2

2

2

2

2

2

 

5 yes

3 5 3 sin 0 no

yes

no

4 1 yes

dx
a t x

dt

d x dx
b x x t x

dt dt

dP
c P t P

dt

d y
d kx x y

dx

ds
e s s t s

dt

First order independent dependent

 

 

You are already familiar with the solution of a certain type of differential equation. 

 

 Example (2) 

 Solve the equation  5
dx

dt
. 

 

 Solution 

 This can be solved by direct integration. 

 


  

5

5 5

dx

dt

x dt t c

 

 

So the most basic method of solving a differential equation is by direct integration.  However, this 

method cannot be used to solve every type of differential equation. 
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Example (3) 

Explain why the first order differential equation  2dP
P

dt
 cannot be solved by direct 

integration. 

 

 Solution 

 In  2dP
P

dt
 the expression P is a function of t.  To make this explicit we could write 

          
2

 and 
dP t

P P t P t
dt

 

 Now we see that when we try to integrate with respect to t we get 

      
2

 =P t P t dt  

As it stands we cannot integrate the right-hand side of this because it involves precisely 

the function that we are trying to find!  Nonetheless, by means of the technique of 

separation of variables the differential equation  2dP
P

dt
 can be solved. 

 

 

 

Solution by separation of variables 
 
For a certain type of first-order differential equation the solution can be found by the technique of 

the separation of variables, which based on integration by substitution.  The formula for 

integration by substitution is given by 

Let             and then  
dt

x f t dt t t u f t dt f t du
du

. 

This formula will be very useful when we explain below why the technique of separation of 

variables works.  But integration by substitution, with which you should already be familiar, is 

best understood by working through examples. 

  

 Example (4) 

 Use integration by substitution with  1u t  to find  1t t dt . 

  

 Solution 

 

       

  

2 21 1 1

2 2

u t u t t u

dt
u dt u du

du

 

 Then 
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 

   

     

   

 

  

    

   

 



2

4 2

5 3

5 3

1 1 2

2

2 2

5 3

2 2
1 1

5 3

2
1 1 3 2

15

t t dt u u udu

u u du

u u c

t t c

t t t

 

 

We also remind you of the proof of the integration by substitution formula.1 

 

 Example (5) 

 Prove             and then  
dt

x f t dt t t u f t dt f t du
du

. 

 

 Solution 

 Let          1  2x f t dt t t u  

By differentiating both sides of (1) we have  
dx

f t
dt

. 

 From (2)     x t x t u  is a composite function, so applying the chain rule to it 

 
dx dx dt

du dt du
 

Since  
dx

f t
dt

 

 
dx dt

f t
du du

 

Integrating both sides with respect to u 

   
dt

x f t du
du

  

 Substituting for x from (1) 

     
dt

f t dt f t du
du

 

 

Integration by substitution uses this result in the forward sense.   Into the integrand 

    1 x f t dt  

we make the substitution 

                                                 
1 This proof was optional in the chapter Integration by substitution.  Hence, example (5)  may be omitted 
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   2 t t u  

to obtain another integrand 

   3
dt

f t du
du

 

that we can directly integrate with respect to u.  (See example 4.)  However, we can reverse this 

process as well.  That is the formula     
dt

f t dt f t du
du

 allows us to cancel out the du 

expressions 

   
dt dt

f t du f t
du du

du    f t dt  

This observation enables us to solve a different type of differential equation. 

 

 Example (6) 

 By direct integration of both sides of  

 
1 dx

t
x dt

 

with respect to t and use of the formula  

   
dt dt

f t du f t
du du

du    f t dt   

solve 
1 dx

t
x dt

. 

  

 Solution 

 
1 dx

t
x dt

 

 Integrate both sides with respect to t 

  
1 dx

dt t dt
x dt

 

 Cancel through the expressions dt on the left-hand side of this 
1 dx

x dt dt  
1

dx
x

 to get 

  
1

dx t dt
x

 

Now integrate both sides, the left-hand side with respect to x, the right-hand side with 

respect to t 

  21
ln

2
x t c  

 Then solve for x 
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




 

2

2

2

1

2

1

2

1

2

t c

t
c

t
c

x e

x e e

x Ae A e

 

 

Note at the last step here c is an arbitrary constant that we introduced at the moment we 

integrated.   cA e  is another way of writing this constant of integration. 

 

The technique for separation of variables allows us to step directly from the line 


1 dx

t
x dt

 

to the line 

 
1

dx t dt
x

 

That is, we nearly always omit the two lines  

 
1

 Integrate both sides with respect to 

1

dx
dt t dt t

x dt

dx

x dt dt    Cancel through  on the left-hand side to obtain an integral in t dt dt dx

.   

This technique enables us to solve a large new class of differential equations.  It can be 

generalised as follows.   

 

Technique of separation of variables 

Suppose we have 

    
dx

k t h x
dt

 

where     and k t h x are functions in t and x respectively.  This is a first order differential 

equation and is solved by bringing all expressions in dx and x to one side of the equation, and all 

expressions in dt and t to the other side.  To do so, divide both sides by  h x  to get 

      
1

1
dx

k t
h x dt

 

Then integrate both sides with respect to t. 

      
1

2dx k t dt
h x

 

Both sides can now be separately integrated – the left-hand side as a function of x and the right-

hand side as a function of t. 
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Remark 

In the above we omitted the following lines that justify the technique 

     

   

 



 

1
1

1

1

dx
k t

h x dt

dx
dt k t dt

h x dt

dx

h x dt
dt  

     





 

 
1

2

k t dt

dx k t dt
h x

 

In practice it is usual to step from line (1) to line (2) without the intermediate steps. 

 

Example (7) 

By means of separation of variables solve  2dP
P

dt
. 

 

Solution 

 

 









   

 




 

2

2

2

1

1

1
1

1
2

constant

1

1

dP
P

dt

dP

P dt

dP dt
P

P t c c

c t
P

P
c t

 

 

Remark 

In this solution it is also usual to step directly from the line at (1) to the line at (2) and omit the 

intervening line.  Of course, it is also perfectly permissible to include the intervening line. 

 

Example (8) 

Solve 
2 2

dy x

dx y
. 

 

 

 



 
 

© blacksacademy.net 
 

8 

Solution 

 




 

  

   

 

2

2

3 2

3 2

2

2

2 where  is a constant
3 2

2 12 3 where 6  is a constant

dy x

dx y

y dy x dx

y x
y c c

y y x k k c

 

 

Remark 

There are two points about this solution to note 

(1)  The constant of integration is arbitrary; therefore, expressions like 6c are not necessary.  

We keep only one constant of integration at any one point. 

(2)  Exact solutions of the form  y f x are not always possible.  The final solution can be 

expressed in terms of any relationship between y and x that is reasonably “neat”. 

 

The next example illustrates the process of finding particular solutions to differential equations.  

This means, to find the exact value for the constant(s) in the differential equation.  In order to 

find a particular solution we need more information.  As the general solution to a differential 

equation involves one or more constants, different values for these constants define different 

particular solutions.  However, all these solutions are related as they are particular examples of 

the general solution.  The general solution, therefore, represents a family of functions.  Each 

member of the family has a different but related graph.  Each graph passes through various 

points, so information about which points a graph passes through enables one to find the 

particular solution.  The additional pieces of information are known as the initial conditions or 

boundary conditions. 

 

 Example (7) 

The gradient function of a curve 
dy

dx
 is proportional to  2 4x .  If the curve passes 

through the origin and the point  2,4  find its equation. 

Solution 

 

   

 

 

 

  

  

 

   

 
2

2 4  is proportional to 2 4

2 4 where constant of proportionality

2 4

4  constant of integration

dy dy
x x

dx dx

dy
k x k

dx

dy k x dx

y k x x c c
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We have two constants, the original constant of proportionality and the constant 

introduced through integration.  To find the particular solution and determine the values 

of these constants we substitute the values from the initial conditions.   

(1) Since the curve passes through the origin we have  0   0x y .  Substituting 

these values into  

    2 4 ,  constantsy k x x c k c  

gives  0c . 

 (2) We are also given  2  when 4x y .  Substituting these values gives 

  

   

 

4 4 8

4 1

12 3

k c

k
 

 The particular solution is 

  21
4

3
y x x  

The general solution to this differential equation is 

    4 ,  constantsy k x x c k c  

The particular solution is 

  
1

4
3

y x x  

The graph of   
1

4
3

y x x  is shown below. 

x

y

( )= +
1

4
3

y x x

4 0

 

 

Had the initial conditions been different, the final particular solution would also have 

been different.  But examination of the form of the general solution 

   4y k x x c shows that all the particular solutions would be related in some way.  
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For example, as the constant k increases, the shape of the parabola gets steeper, but it 

still crosses the x-axis at –4 and 0. 

x

y

( )= +
1

4
3

y x x

4 0

( )= +
1

4
2

y x x

 

 

On the other hand, if c increases then the whole parabola shifts upwards.  So general 

solutions to differential equations are a family of related functions, represented by a 

series of curves with similar properties.   The particular solution is just one of this family 

of curves. 

 

Finally we will illustrate a solution to a differential equation where the equation involves a 

trigonometric function 

 

Example (9) 

 2Solve 2cos
dx

x y
dy

 

Solution 





   

 

    

  

   

 



 

2

2

2

2 2 2

2

2

2

2

2cos

2cos

To find  2cos

cos2 cos sin 2cos 1 Double angle formula

1 1
cos cos2 Rearrangement

2 2

1
2cos (cos2 1) sin2

2

1
sin2

2 2

sin2 2 2

dx
x y

dy

x dx y dy

y dy

y y y y

y y

y dy y dy y y c

x
y y c

x y y k k c

 


