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Error in an interpolating polynomial 
 
 
Theorem 
 
Given the function f(x) and an interpolating polynomial p(x) of the degree 
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Then the error can be denoted by
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where C  is a number such that 

In this theorem we have 
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The product     0 1  nx x x x x x   ensures that  
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   1The expression  means the 1 th derivertive of .

This gives a prodedure for finding error bounds of interpolating polynomials.
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   1. You are given a function x  and an interpolating polynomial  and points f p x
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2. Find the n+1 th derivertiveof  and determine a value of  such that 

    

     for all the values of C between  and .
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3. Then a bound for the error is 
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