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Equilibrium of Rigid Bodies in Contact 
 
    
 
This subject is a further extension of that branch of mechanics that is called statics and is 
concerned with the equilibrium of static objects – objects that are not moving. 
 
The theory that is assumed, apart from a general understanding of algebra, is: 
 

1. The process of resolving forces into components – often horizontal and vertical 
components – and the principal that the sum of forces that are in static equilibrium is 
zero. 

2. For a body in static equilibrium the sum of all moments about any point or axis is 
zero. 

3. Basic knowledge about centres of mass. There is no new theory involved. This topic is 
concerned with an extension of the given theory of statics to more complicated 
examples. 

4. Newton's Third Law: every action has an equal and opposite reaction. 
5. Knowledge of the coefficient of friction and understanding of toppling and sliding. 

 
What is new is that success in problem-solving in this area requires (1) the development of a 
certain way of viewing objects – the ability to see objects in part to whole relationships – and 
(2) the development of physical intuition and understanding of forces. Success in this topic 
requires a clear grasp of existing theory and visual and physical insight. 
 
To illustrate these ideas we consider an asymmetrical step-ladder.  
 

X Y

Z
 

 
The ladder comprises two metal pieces X and Y, hinged together and standing on a smooth 
floor, held together by a rope, Z. Y is shorter than X. Since the floor is smooth there are no 
frictional forces at the floor, consequently there are only the normal reactions to consider at 
the floor. In this illustration we shall also suppose that both vertical pieces, X and Y, have the 
same weight W. 
 
The spatial insight required is illustrated as follows. The ladder can be viewed either as a 
WHOLE or as three separate PARTS. The whole is shown above, but as parts, the object is a 
composite of: 
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X Y

Zmetal piece x
rope z

metal piece y
 

 
When we look at the object as a whole we consider only the external forces acting on it as a 
whole. These are just the weight of each and the reactions at the floor. Because the rope is 
"light" we shall assume it has no weight. Since the floor is "smooth" there are no frictional 
forces on the floor. 
 
Thus, the forces acting on the ladder as a whole are: 
 

N M

W W  
 
We ignore all the internal forces such as the tension in the rope – these all cancel out when the 
object is viewed as a whole. However, a force that is internal to an object viewed as a whole 
may be external to PART of the object. The forces acting on each point of the ladder are: 
 

N M

WW

R
S

S
R

metal piece x

rope z

metal piece y

T T
T T
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The metal piece X is being acted upon by a tension in the rope pulling in the direction of Y. 
At the hinge the piece Y is pushing against X. This contact force has been resolved into two 
parts – a horizontal component and a vertical component. Physical intuition is required to see 
which way the forces are acting. Piece Y is "pushing" piece X upwards. To see why observe 
that since Y is shorter than X it will be bearing none of the common weight, hence, it must be 
pulling X upwards. The contact forces acting on X due to Y must be equal in size to the 
contact forces acting on Y due to X. This is because the object as a whole is not moving, and 
is an application of Newton's Third Law. That law also tells us about the direction of the 
forces – the contact forces between two objects must be equal in size and opposite in 
direction. 
 

R
S

S
R

contact forces of 
Y on X

contact forces of
X on Y  

 
The contact forces of Y on X must be equal in size and opposite in direction to the contact 
forces of X on Y. 
 
We will now develop this into a full example. 
 

Example (1) 
 

A

B

C

3.6m

 
 
A step-ladder is made of two metal pieces, AB and BC. The length of AB is 3.9m and 
that of BC is 3.75m, when open the height of the ladder is 3.6m above the ground. The 
metal pieces are modelled as uniform rods and they are smoothly hinged at B. The 
floor is smooth and the distance AC = 2.55m. The two metal parts are joined by a light 
horizontal rope of length 1.7m. The weight of AB is twice that BC. If the tension in 
the rope is 12.25N find W. 
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Firstly, we mark on a diagram the forces acting on the ladder as a whole: 
 

N M

2W W

A

B

C

 
 
These are the weights of the two sections acting on their centres of mass situated half 
way up the ladder. 
 
Resolution of the problem will depend on the geometry of the ladder, and hence a 
separate diagram for this is needed. 
 
 

A

B

C

D E F

G

3.9 3.75

2.55

3.6

1.7

 
 
 
Since we will be taking moments experience tells us that we will need to know the 
perpendicular distances DE, EF, BE, EG, AG, GC so we proceed to calculate those 
using ratios and Pythagoras's theorem. If we know the perpendicular distances we will 
not, in fact, need to know the angles  and It is easier to work with perpendicular 
distances than with angles, so we use these wherever possible.  
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A G

B

3.9
3.6

1.5  
 

2 2AG 3.9 3.6 1.5    
 

G

B

3.753.6

1.05
C

 
 

2 2GC 3.75 3.6 1.05

check AC = AG + GC

2.55 1.5 1.05

  

 
 

 

A

B

C

D E F

G
2.55

3.6

1.7
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1.7

3.6 2.55
1.7 3.6

2.4
2.55
1.2

BE DF

BG AC
BE

BE

EG



 


 

 

 

 
The completed diagram is: 
 

A

B

C

3.6 3.9
3.75

1.5 1.05

1.2

2.4

 
 
Recall that the external forces on the ladder are: 
 

N M

2W W

A

B

C

 
 
From this, by resolving vertically, we obtain the equation: 
 

2

3       (1)

N M W W

N M W

  
 

 

 
This tells us that we seek equations involving N and M, since then we will be able to 
find W. 
 
The forces acting on AB are: 
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N

2W

R

T
A

B

B
T=

3.6

1.5
0.75

2.4

 
 

Since the ladder is in static equilibrium the horizontal component of the reaction at B 
must equal the tension in the rope, T = 12.25. However, it is N we are interested in, so 
we choose to take moments at B. 
 

B

N

2W

1.5

0.75
2.4

T
 

 
Taking moments at B eliminates the reaction R from the equation. Thus 

 
1.5N 1.5 2W 2.4 T     
 
Hence 1.5N = 1.5W + 29.4 (2) 
 
The forces acting on BC are 
 

M

W

R
T

C

B
B

T=

3.6

1.05
0.525

2.4
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Taking moments at B  

B

M

W

1.05
0.5252.4

T
 

 

 
1.05M 0.525W 2.4T

1.05M 0.525W 29.4 3

 

 
 

 
Hence, we have the three simultaneous equations: 
 

 
 
 

N M 3W 1

1.5N 1.5W 29.4 2

1.05M 0.525W 29.4 3

 

 

 

 

 
From (1): N = 3W – M 
 
In (2) 

1.5(3W - M) = 1.5W + 29.4 

4.5W – 1.5M = 1.5W + 29.4 

3W – 1.5M = 29.4        (4) 

 
From (3) 0.525W – 1.05M = –29.4    (5) 
 

   1.5
5 1.5W 1.5M -42 6

1.05
    

 
(4) – (6)   1.5W = 71.4 
 
 W = 47.6N 
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This example illustrates a number of aspects of problem-solving in this area. 
 

1. By resolving for the system as a whole and separately as parts we obtain a set of 
simultaneous equations, which are then solved algebraically. 

2. The algebra can be simplified if moments are taken around appropriate points. 
However, provided moments are taken consistently the problem will be soluble. If you 
obtain a negative value for a force it merely means that you drew it in your diagram 
acting in the wrong direction. 

 
We now proceed to a second example. 
 

Example (2) 
 

A

B
x  

 
A uniform rod AB, of length 18a and mass 2m leans against a cylinder. Its base B is 
hinged to a rough floor. The whole system is in static equilibrium. there is no friction 
between the rod and the cylinder, but the contact between the cylinder and the floor is 
rough. The angle made by the rod with the floor is 2 where 
 

 1 5tanh 12  .Should be tan 

 
The cylinder has radius 5a and mass M. 
 
(i)  Find, in terms of m and g, the size of the reaction between the rod and the 
cylinder. 
 
(ii)  If the cylinder is just about to slip on the floor, show that the coefficient of 

friction between the cylinder and the floor is O.17 to 2 S.F. 
 
Solution 
 
(i)  The geometry of the problem is again important. We need to know the distance 

of the point of contact between the rod and the floor, B, and the point where 
the rod touches the cylinder. 
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A

B
x x

x5a

5a5a

 
 

We have 
 

5
tan

5 5

12
12

a

x
a

x
x a

 

 

 

 

 
The forces acting on the rod are as follows: 
 

B

x N

SW = 2mg

R

22

9a

12a

W  
 
Here it makes sense to resolve using the angle 2. For this we use the 
trigonometric identity: 
 

2 2

2 2

cos 2 cos sin

12 5

13 13

144 25

169
119

169

   

       
   





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119

12 18
169

357

338

R mg

R mg

  


 

 
 (ii)  The forces acting on the cylinder are: 
 

  

A

B

R

WM
F  

 
Resolving the forces on the cylinder 
 

M

W = mg

357

338
mgR

 
 

 

 

 

cos 2

357 119

338 169
57122 42483 99605

338 169 338 169
sin 2

W R M

mg mg M

mg
M mg

R M



 

  

  


 

 
 

 

 



 
 

            Copyright © Blacksacademy – September 2001 
 

 
 

12 
 

5 12 48
Now sin 2 2sin cos 2

13 13 169
357 48

338 169
mg M

  



    

  
 

 

 

Hence, 

357 48

338 169
99605

338 169

0.172039...

0.17 2.S.F.

M

M

 

 
  
 
  





 


