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Curves in Euclidean Space 
 
 
 

Curves in Euclidean space 
 

Here we are considering curves embedded in three-dimensional Euclidean space, 3 .  Our aim 

here is to find an appropriate mathematical description of such a curve. 
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As the diagram indicates one way to proceed is by giving the Euclidean coordinates of an 

arbitrary point P on a curve . 

  , ,P x y z  

To define a curve we must allow P to move along the curve, so we shall specify P as a point 

moving along the curve with respect to a parameter t.  This makes the coordinates of P into 

coordinate functions of the parameter t. 

         , ,P t x t y t z t  

Different values of t shall specify different points on the curve.  Thus at time 0t   the point 

on the curve shall be  

            0 0 0 00 0 , 0 , 0 , ,P P x y z x y z .   

At  1t  we shall have 

            1 1 1 11 1 , 1 , 1 , ,P P x y z x y z  

and so forth. 

 

The parameter t may be given a physical interpretation.  One obvious interpretation is to use t 

to represent time.  In that case the distance between two points 0 1 and P P  along a curve 
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represents the distance travelled in the given time by a particle moving along that curve.  The 

first derivative gives the velocity of a particle travelling along the curve and the second 

derivative gives its acceleration.  But the parameter t need not represent time, it may be 

completely arbitrary.  Also, there is the unit speed parametrization of a curve –  this is the 

parameter that travels along the curve at unit speed  11 ms . 

 

Another advantage of this approach is that it allows the curve to be traversed in two different 

directions.  If we substitute t  for t in          , ,P t x t y t z t  we get the same curve travelled 

in the opposite direction.   

 

Clearly 

OP  is a vector from O to the point P on the curve.  Hence, this approach turns a curve 

in three-dimensional Euclidean space into a continuous vector function. 
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So 

            , ,P t t x t y t z tr  

 

Example (1) 

A curve in Euclidean 3-space is given by 

      , , cos , sin ,1t x y z a t a tr  

By eliminating t from     and x t y t  find the Cartesian equation linking x and y.  

Hence describe this curve geometrically. 

Solution 

   2 2 2 2 2cos sinx y a t a t a  

 2 2 2x y a  is the Cartesian equation of a circle centre the origin and of radius a.  We 

have 
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  




2 2 2

1

x y a

z
 

Hence this traces out the circle centred on the z-axis of radius a in the plane  1z . 

 

z

x

yO

a

r

 

 

It is not possible to eliminate t from       , ,x t y t z t  to get a Cartesian equation for a curve as 

a relationship between x, y and z.  If we can by algebraic manipulations obtain a form 

  ,z f x y this represents a Cartesian equation for a two-dimensional surface embedded in 3-

dimensional Euclidean space.  In the Cartesian equation   ,z f x y  we see that z is a function 

of two variables x and y and hence describes a surface and not a curve. 

 

 Example (2) 

 By letting       0,  1, 2, 3z z z z  

sketch the surface   2 2z x y . 

Solution 

We get a series of contour curves as relationships between x and y for these different 

values of z. 

      

    

    

    

2 2

2 2

2 2 2

2 2 2

0 0 0

1 1

2 2

3 3

z x y x y

z x y

z x y

z x y

 

The surface   2 2z x y  is a cone generated by rotating the line z x  about the z-

axis. 
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z = 2

z = 3

z = 3

z = 2

z = 1

 

 

 

The vector    tr a b a  traces out the straight line through A and B where a, b are the 

position vectors of A, B respectively. 

 

 Example (3) 

 Find the parametric form of the straight line between the points  

    1, 1,0  and 0,1, 1A B  when  0 s and 1 st t  respectively.  If t represents the time 

of a particle P on this curve, find the speed of P as it moves along this curve. 

 

 Solution 

 

   

     
              
           

   
               
      

1 0, 1

1 1 2

0 1 1

1 1

1 2 1 ,2 1,

0 1

t t t t t

a b b a

r a b a

 

The distance      2 2 21 2 1 6AB b a , which the particle traverses in 1 second.  

So the speed is:  1speed 6 ms  

 

Clearly the vector    tr a b a  is not the only parametrization of the straight line between 

two points A and B where a, b are the position vectors of A, B respectively. 

 

 

Curves are continuous vector functions of a single parameter 
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A vector function is a mapping  

        
 







3

1 2 3, ,t t f t f t f tr


 

If t is a continuous variable and 1 2 3, ,f f f  are continuous then r is a continuous vector function.  

Curves in Euclidean space are continuous vector functions.  The function     2 3, ,t t t tr  is an 

example of a continuous vector function.  The function     1 ,1,1t tr  is not continuous 

because there is a singularity at t = 0 around the neighbourhood of which 1
t  varies from 

   to .  In the expression  

        
 







3

1 2 3, ,t t f t f t f tr


 

the domain of the vector function is the real line  .  It is not necessary for the domain to be 

the entire set  ; it may be any open subset of  .  Denote by I an open interval in the real line 

 ; that is   ,I a b  where a, b are real numbers.  Hence the parameter t is such that  a t b .  

In order for the vector function to be continuous, it is essential that the set be open.  That 

means that the end-points a and b are not included in the set.  Thus if we let 

OP  be a vector 

where O is the origin and P is the point given by the continuous vector function 

         1 2 3, ,t f t f t f tr , then as t varies 

OP  describes a continuous curve in Euclidean space.  

The vector function  

OP tr  is called the parametric equation of the curve. It is not 

necessary that  tr  is a bijection (one-one) as a curve may intersect itself; for example, if t is 

time then at two different times t
1
, t

2
 it is possible that    1 2t tr r  but not 1 2t t . 

 
z

x

y
O

r ( )t

r r (  ) =  (   )t t1   2P

 

Example (4) 

Sketch    3cos ,0,sint tr  
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Solution 

It is an ellipse in the xz-plane  0y  passing through     3,0,0  and 0,0, 1 . 

 

z

x

yO

(3, 0, 0)

( 3, 0, 0)(1, 0, 0)

( 1, 0, 0)

 

 

 

Example (5) 

Sketch   , ,t t tr  

Solution 

It is a straight-line wedge in the plane spanned by x = y and the z-axis. 

 

z

x

yO

y x = 

 

 

 

Example (6) 

Sketch   2 3, ,t t t tr  

Solution 

Factorising this gives 
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       2 3 2 2, , , , 1t t t t t t t tr  

That is 

     2 2, , , , 1x y z t t t t  

If it were that  0z  this would describe a parabola  2y x  in  the xy-plane.  The value 

of z represents the height above or below this parabola   2 1z x x .  This is a cubic 

function with roots at 0, 1 and 1.  The curve lies above and below the parabola  2y x  

in the xy-plane. 

 

z

x

y

y x = 

O

(1, 1, 0) when  = 1t

(1, 1, 0) when  = -1t

2

 

 

 

Differentiation of continuous vector functions 
 

First Derivative 

Let          1 2 3, ,t f t f t f tr  be a continuous vector function of t, then 

   
 

1 2 3, ,
d df df df

dt dt dt dt

r
 

is the first derivative of  tr .  This first derivative is also a vector.  To show this we must 

show that 
 
 
 

1 2 3, ,
df df df

dt dt dt
 is (a) a triad of scalars, (b) invariant under translation, and (c) 

satisfies the transformation law    ij

d d
a

dt dt
r r  where the ija  are the direction cosines of 

   relative to Ox y z Oxyz  and    ijar r . 
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Proof 

 

(a) This is self-evident. 

(b)  Let  be translated by tF a .  Thus     tr a F .  Then 

 

  
 

    

   

   
 

1 2 3

since  is a constant

also since  is a constant

, ,

d d
t

dt dt
d d

dt dt
d

dt
df df df

dt dt dt

r
a F

F
a a

F
a

 

 

(c) Let  
 
    
 
 

11 12 13

21 22 23

31 32 33

ij

a a a

a a a a

a a a

A  be the transformation matrix of the rotation of 

axes.  Let    ijar r  where          1 2 3, ,t f t f t f tr  is a vector function of t.  

Then 

 
 

 




   Since the  are constant

ij

ij ij

d d
a

dt dt
d

a a
dt

r
r

r
 

 

Example (7) 

Verify that the curve 

      , , cos , sin ,1t x y z a t a tr   (see example (1)) 

under the transformation matrix 

 
 
 
 
 
 
 
  
 

1 1
0

2 2
1 1

0
2 2

0 0 1

 

 

which represents the transformation when a set of axes is rotated clockwise (i.e. from 

the x-axis to the y-axis) through an angle of 
4  about the z-axis, obeys the 

transformation law    ij

d d
a

dt dt
r r . 

Solution 
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 

 
 
     
               
     

    
  
 

1 1
0

2 2 cos cos sin
1 1

0 sin sin cos
2 2 2

1 1
0 0 1

ij

a t t t
a

a a t t tr r  

           
 

cos sin ,sin cos ,1 cos sin ,cos sin ,0
2 2

d d a a
t t t t t t t t

dt dt
r  

   

   

 
 
 
 

  
 
 
  
 
 
 
 
 

       
 
 
  
 

1 1
0

2 2
1 1

0 cos , sin ,1
2 2

0 0 1

1 1
0

2 2
1 1

0 sin ,cos ,0 cos sin ,cos sin ,0
2 2 2

0 0 1

ij

d d
a a t a t

dt dt

a d
a t t t t t t

dt

r

r

 

 

Higher derivatives 
 

The second and higher derivatives are defined accordingly.  For example, if 

         1 2 3, ,t f t f t f tr  then 
      

   

2 2 2 2
1 2 3

2 2 2 2
, ,

d d d d f d f d f

dt dt dt dt dt dt
r r . 

 

Example (8) 

Find 
2

2
 and 

d d

dr dt

r r
 where 

(i)    cos ,2sin ,t t tr  

(ii)   , ,t tt e er  

Solution 

(i)    cos ,2sin ,t t tr  

 
 

 

   

   

 

  
2

2 2
2

sin ,2 cos ,1

cos , 2 sin ,0

d
t t

dt

d
t t

dt

r

r
 

(ii)   , ,t tt e er  
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 
 





  

 

1, ,

0, ,

t t

t t

e e

e e

r

r
 

 

Example (9)  

Given         cos sin , cos sin ,0t td
e t t e t t

dt

r
 and    0 1,0,0r  find  tr . 

Solution 

Integrating 
d

dt

r
 by inspection or by parts 

      cos , sin ,t tt e t A e t B Cr  

When t = 0 we have  0C  and 

   
   

1 1 0

0 0 0

A A

B B
 

Hence       cos , sin ,0t tt e t e tr .  It is a spiral in the xy-plane that infinitely spirals in. 

 

z

x

y
O

 

 

 

Differentiation Rules 
 

   
d d d
dt dt dt

a b
a b  

   
d df d

f f
dt dt dt

a
a a  

     d d d
dt dt dt

a b
a b b a  

     
d d d

dt dt dt

a b
a b b a  

These are all proven by writing out the derivatives in component form. 
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Orthogonality result 

Let â  be a unit vector.  An important result is that the vector 
ˆd

dt

a
 is perpendicular to â , 

provided that 
ˆ

0
d

dt

a
 and ˆ 0a .  To show this we start with the identity 

   2
ˆ ˆ ˆ ˆ1 since 1a a a a  

Differentiating this gives 

  ˆ ˆ 0
d

dt
a a  

  ˆ ˆ
ˆ ˆ 0

d d

dt dt

a a
a a  

ˆ
ˆ2 0

d

dt

a
a  

So, if 
ˆ

0
d

dt

a
 this implies that 

ˆd

dt

a
 and â  are vectors that are perpendicular. 

 

Remark: this would apply if a were any vector of constant length, so that the length of a is not 

a function of the parameter t.  However, if the length of a varies with the parameter t then the 

result does not follow. 

 

 

Interpretation of the first derivative as the tangent to a curve 
 

Let  tr  be a continuous curve, and let 0PP  be a cord joining the points P and P
0 
 on this curve.  

The tangent at P
0
 is the gradient of this cord in the limit as  0P P . 

O

0

r ( )t

P

P

r (   ) = (  (   ),  (   ),  (   ) )t x t y t z t0 0 0 0



 

 

That is the tangent is 


 
 

 0

0

0

lim
t t

PP

t t
.  However 
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           

   







      
    

    
  

 
  

 

0

0

0

0 0 0

0 0 0

0

0

0

0

lim , ,

lim

lim

t t

t t

t t

x t x t y t y t z t z td

dt t t t t t t

t t

t t

PP

t t

r

r r
 

So 
d
dt
r

 is tangent to the curve, C.  Furthermore, 
d
dt
r

 points in the direction in which t 

increases; i.e. in the direction in which the curve C is traced out as t increases.  Let 


d
dt
r

n  then n is tangent to C and ˆ
n

n
n

 is a unit tangent vector to C.  We proved above that 

if â  is a unit vector then the vector 
ˆd

dt

a
 is perpendicular to â , provided that 

ˆ
0

d

dt

a
.  This 

means that the derivative of n̂ , which is ˆ
d

dt
n  is perpendicular to n̂ . 

 

z

x

y

r( )t

r ( )t

O

P

n =
r( )t

d
dt

n

 

 

 

 

 

 Example (10) 

 Let   cos ,sin ,t t tr     

Show that the vectors      ˆ ˆ ˆ ˆ and 
d

t t
dt

n r n n  are orthogonal. 

Solution 



 
 

© blacksacademy.net 
 

 
13 

 

 

 

 

   



   

    


  



   

     



2 2

cos ,sin ,

sin ,cos ,1

sin cos 1 2

1
ˆ sin ,cos ,1

2

1
ˆ ˆ cos ,sin ,0

2
1 1

ˆ ˆ sin ,cos ,1 cos ,sin ,0 0
2 2

ˆ ˆTherefore  and  are orthogonal

t t t

d
t t

dt
t t

t t

d
t t

dt

t t t t

r

r
r

r

r
n

r

n n

n n

n n

 

 

Example (11) 

(a) Find the unit tangent T̂  to the curve    
  
 

2

1, ,
2

t
t tr .   

(b) Show that T̂  and ˆd

dt
T  where T̂  is the vector found in part (a) are 

orthogonal. 

Solution 

 

 

 

 




2

2

( ) 0,1,

1

1ˆ 0,1,
1

d
a t

dt

t

t
t

r
T

T

T

 

 
   

       

 
 

  
   

   
      

    
         

1 1
2 22 2

2 2

3 3 3 3
2 2 2 22 2 2 2

1ˆ( ) 0, ,

1 1

1 1ˆ 0, , 0, ,

1 1 1 1

t
b

t t

d t t t t

dt
t t t t

T

T

 

         

   

   
   

     
         

   
 

1 1 3 3
2 2 2 22 2 2 2

2 22 2

1 1ˆ ˆ 0, , 0, ,

1 1 1 1

0 0
1 1

d t t

dt
t t t t

t t

t t

T T

 

  ˆ ˆHence  and  are orthogonal.
d

dt
T T  

 

 

Smooth, piecewise smooth and simple curves 
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Smooth curve 

Intuitively, a smooth curve is one that does not suddenly change direction.  Thus a curve 

         , ,t x t y t z tr  in the interval  0 1t t t  is smooth if everywhere in this interval the 

derivative 
d
dt
r

 exists. 

 

Piecewise smooth 

A piecewise smooth curve is made up of pieces of smooth curves joined end to end. 

 

 

 

Simple open curve 

A simple open curve is one that does not cross itself. In this case the function  

         , ,t x t y t z tr  

is one-one (a bijection).  That is, each point of  tr  corresponds to just one value. 

 

Simple closed curve 

A simple closed curve is a curve whose end points coincide but all other points correspond to 

just one value of t. 

 

 

Example (12) 

Sketch the curve with parametric equation 

        3 3, cos ,0 2 2t t t tr  

and show that it is piecewise smooth. 

Solution 

The sketch is 
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  
x

y

 

 

As the sketch shows  tr  is made of three smooth curves 

   

   
   

 

 

 

     

   

   

1

2

1

3, cos ,0 2 2

,cos ,0 2 2
3, cos ,0 2 2

t t t t

t t t t

t t t t

r

r

r

 

 

 

 

Change of parameter 

The curve   tr r  may be given a new parameter  t t s  where  0
ds
dt

 at all points in the 

interval  0 1s t s  and     0 0 1 1,t t s t t s .  Hence s increases as t increases,  t t s  is an 

increasing one-one function, and the direction (orientation) of   tr r  is preserved. 

 

 

Arc length 

Let   tr r  be the piecewise smooth curve C.  Let ds be a small increase along the cord of this 

curve corresponding to small increases dx, dy and dz. 

 



dx

dy

dz
ds

 

 

We have 

  2 2 2ds dx dy dz  

and 
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             
     

2 2 2
ds dr dx dy dz

dt dt dt dt dt
 

Then the arc length along C from t
0
 (fixed) to t

1
 (variable) is given by 

   

             
     





1

0

1

0

2 2 2

t

t

t

t

ds
s t dt

dt

dx dy dz
dt

dt dt dt

 

 

 

Intrinsic equation of a curve 

For the curve          , ,t x t y t z tr  

write the arc length from a (fixed) to t (variable) as 

    
t

a
s t u dur  

This gives s as a function of t, which we can solve to get t as a function of s.  So we can 

reparametrize the curve  tr  by using s instead of t.  This is the unit speed reparametrization 

of  tr .  Hence, by using arc length as the parameter, we define the intrinsic equation of the 

curve.   

     s t sr  

Then the unit tangent vector is obtained from this intrinsic equation as 

    
 

ˆ , ,
d dx dy dz

ds ds ds ds

r
T  

 

Example (13) 

Given     cos , sin , 0 2a t a t bt tr  

 

(a) Find the intrinsic equation  sr  of the curve. 

(b) Show that the derivative of  sr  is unitary. 

Solution 

 

   

( ) cos , sin ,

sin cos

a a t a t bt

dx dy dz
a t a t b

dt dt dt

r
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 

 
 

            
     

  

 

 

   







1

0

1

0

1

0

1

0

2 2 2

2 2 2 2 2

2 2

2 2

2 2
0 1

sin cos

    where 0 and 

t

t

t

t

t

t

t

t

dx dy dz
s t dt

dt dt dt

a t a t b dt

a b dt

a b t

a b t t t t

 

Hence 


2 2

1
t s

a b
 

Therefore, the intrinsic equation of the curve is 

        

  
         

2 2 2 2 2 2

cos , sin ,

cos , sin ,

s a t s a t s bt s

s s bs
a a

a b a b a b

r

 

 

 

 

  
         

 
       

   


2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

2 2

( ) cos , sin ,

sin cos
, ,

1
sin cos 1

s s bs
b s a a

a b a b a b

d a s a s b
s

ds a b a b a b

a s a s b
a b

r

T r

T

 

 

 Example (14) 

 For the curve  
 

  
 

2 3

, ,
32

t t
t t  

 (a)  Find the velocity, speed and acceleration for arbitrary t and at  1t . 

(b)  Find the arc-length function  s s t  based at  0t  and determine the arc 

length of   from   1 to 1t t . 

Solution 

 
 

  
 

2 3

, ,
32

t t
t t  
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   
         
     
     

   
   
   

















 

        

 

 

  

 

 
       

 
  

                 
    

 

2

2 22 2 2 4 2

3 3
2

0 0
0

13

1

1, 2 ,

1 2 1 2 1

0, 2,2

1 1 1, 2,1

speed 1 1 2

1 0, 2,2

1
3 3

Arc length from 1 to 1

1 1
1 1

3 3 3

t
t t

t t t

v t t t t t t t

a t t t

v

v

u t
s t u du u du u t

t t

u
l u

2
2

3

 

 

 

Example (15) 

Sketch the curve      cos , sin ,t t t t t t .  Find the velocity, speed and acceleration of 

  t . 

Solution 

     cos , sin ,0t t t t t  describes a circle in the xy-plane.  A particle moving along this 

locus would be speeding up owing to the factor t and the circle would be steadily 

widening.   In   

     cos , sin ,t t t t t t  

the particle is also rising parallel to the z-axis at a uniform rate.  Hence 

     cos , sin ,t t t t t t   

describes a helix in Enclidean 3  space. 

 

z

x

y
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   

     


 



   

cos , sin ,

velocity cos sin ,sin cos ,1  at 

t t t t t t

t t t t t t t t
 

 

          

      

 

2 2

2 2 2 2 2 2

2

speed cos sin sin cos 1

cos 2 cos sin sin sin 2 sin cos cos 1

2

t t t t t t t

t t t t t t t t t t t t

t

 

           acceleration 2sin cos ,2cos sin ,0  at t t t t t t t t  

 

 Example (16) 

Show that the curve     cosh ,sinh ,t t t tr  has arc-length function  

    2sinhs t t  and find a unit-speed reparametrization of r. 

   

   

 

 





        

    

2 2 2 2 2 2

0 0

cosh ,sinh ,

sinh ,cosh ,1

speed sinh cosh 1 sinh cosh cosh sinh 2 cosh

2cosh 2sinh 2sinh
tt

t t t t

d
t t t

dt
d

t t t t t t t t
dt

s t u du u t

r

r

r
 

  
    

 
1

Then

2sinh sinh
2

A unit speed reparametrization of  is given by

s
s t t

r

 

    

  





         
                    
         

1 1 1

2
1

cosh sinh ,sinh sinh ,sinh
2 2 2

1 , ,sinh
2 2 2

s t s

s s s

s s s

r

 

This follows since  2 2cosh 1 sinhx x ; hence 

       
         

      

2
2 1 2 1cosh sinh 1 sinh sinh 1

22 2

s s s
 

 

Example (17) 

Let 1 2 and u u  be unit speed reparametrizations of the same curve  tr .  Show that 

there is a number     2 1 such that l s s lu u  for all s.  Interpret the geometric 

significance of l. 

Solution 
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    
    

 
 

 

     









       

 
   





  

1

2

2

2 1 1

1

2

1 2

Let

* *

be two unit speed parametrizations of .  Then

*

Let * arclength from  to 

Solving *  for *  

* arclength from 

t

t

t

t

t t t

t t t

s t s

s t s

t

s u du

s u du

l s s u du u du u du t t

l s s s

s s l s

u r

u r

r

r

r

r r r

    

1 2

2 1

 to 

Hence

*

t t

s s lu u

 


