Curves in Euclidean Space

Curves in Euclidean space

Here we are considering curves embedded in three-dimensional Euclidean space, E*. Our aim

here is to find an appropriate mathematical description of such a curve.

As the diagram indicates one way to proceed is by giving the Euclidean coordinates of an

arbitrary point P on a curve c.
P=(x,y,2)

To define a curve we must allow P to move along the curve, so we shall specify P as a point
moving along the curve with respect to a parameter t. This makes the coordinates of P into

coordinate functions of the parameter t.
P(t) = (x(t), (1), (1))

Different values of t shall specify different points on the curve. Thus at time ¢ =0 the point

on the curve shall be

P, =P(0)=(x(0),5(0),2(0)) = (X0, ¥0:2) -
At t =1 we shall have

P =P(1)= (x(l),y(l),z(l)) = (X, 11,2,)

and so forth.

The parameter t may be given a physical interpretation. One obvious interpretation is to use t

to represent time. In that case the distance between two points P, and P, along a curve
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represents the distance travelled in the given time by a particle moving along that curve. The
first derivative gives the velocity of a particle travelling along the curve and the second
derivative gives its acceleration. But the parameter t need not represent time, it may be
completely arbitrary. Also, there is the unit speed parametrization of a curve - this is the

parameter that travels along the curve at unit speed (1 ms’l) .

Another advantage of this approach is that it allows the curve to be traversed in two different
directions. If we substitute -t for tin P(t)= (x(t), y(t),z(t)) we get the same curve travelled

in the opposite direction.

Clearly OP is a vector from O to the point P on the curve. Hence, this approach turns a curve

in three-dimensional Euclidean space into a continuous vector function.

V4
A

B (X0, Yo, 2)
131 (X17 Y1yzl)

Example (1)

A curve in Euclidean 3-space is given by
r(t)=(x,y,z)=(acost,asint,1)
By eliminating t from x(t) and y(t) find the Cartesian equation linking x and y.

Hence describe this curve geometrically.

Solution
X2 +y*=a’cost+a’sint = @

x?+y?=a® is the Cartesian equation of a circle centre the origin and of radius a. We

have
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X2+y2=a2
z=1

Hence this traces out the circle centred on the z-axis of radius a in the plane z=1.

>
|
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It is not possible to eliminate t from (x(t),y(t),z(t)) to get a Cartesian equation for a curve as

a relationship between x, y and z If we can by algebraic manipulations obtain a form

z=f (x,y) this represents a Cartesian equation for a two-dimensional surface embedded in 3-

dimensional Euclidean space. In the Cartesian equation z=f (x,y) we see that zis a function

of two variables x and y and hence describes a surface and not a curve.

Example (2)
By letting z=0, z=+1,z=42, z=43
sketch the surface z=+.x*+)?.

Solution

We get a series of contour curves as relationships between x and y for these different

values of z.

z=0 = xX’+y*=0 = x=y=0
z=t1 = X2 +y*=1

z=12 = X2yt =22

z=%3 = X2+yP=3

The surface z=+x*+)* is a cone generated by rotating the line z=x about the z-

axis.
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The vector r :a+t(b7a) traces out the straight line through A and B where a, b are the

position vectors of A, Brespectively.

Example (3)
Find the parametric form of the straight line between the points
A(1,-1,0) and B(0,1,-1) when t=0sand t=1s respectively. If t represents the time

of a particle P on this curve, find the speed of P as it moves along this curve.

Solution
1 0, -1
a=|-1|b=|1 |b-a=|2
0 -1 -1
1 -1
r=a+t(b-a)=|-1|+t|2 |=(1-t,2t-1,-1)
0 -1

The distance |AB|=|b-a|=v1*+2°+1° = J6 , which the particle traverses in 1 second.

So the speed is: speed =+/6 ms™

Clearly the vector r=a+ t(b - a) is not the only parametrization of the straight line between

two points A and B where a, b are the position vectors of A, B respectively.

Curves are continuous vector functions of a single parameter
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A vector function is a mapping
R - E’
{t =1 () = (£ (0). (1), (1))
If tis a continuous variable and f,, f,, f; are continuous then r is a continuous vector function.

Curves in Euclidean space are continuous vector functions. The function r(t) = (t,tz,t3) is an
example of a continuous vector function. The function r(t):(%,l,l) is not continuous

because there is a singularity at t = 0 around the neighbourhood of which % varies from

+0 t0 — . In the expression

R - E’

{f = r(t) = (£ (1) (1) (1))

the domain of the vector function is the real line R. It is not necessary for the domain to be
the entire set R ; it may be any open subset of R. Denote by I an open interval in the real line
R; thatis I = (a,b) where a, b are real numbers. Hence the parameter tis such that a<t<b.
In order for the vector function to be continuous, it is essential that the set be open. That
means that the end-points a and b are not included in the set. Thus if we let OP be a vector
where O is the origin and P is the point given by the continuous vector function

r(t)= (f1 (t),fz(t),fs(t)) , then as t varies OP describes a continuous curve in Fuclidean space.
The vector function OP = r(t) is called the parametric equation of the curve. It is not
necessary that r(t) is a bijection (one-one) as a curve may intersect itself; for example, if t is

time then at two different times ¢, t, it is possible that r(t,) =r(t,) butnot t, =t,.

r(t,)=r(t)

Example (4)
Sketch r =(3coszt,0,sin 7t)
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Solution

It is an ellipse in the xz-plane y =0 passing through (+3,0,0) and (0,0,+1).

Example (5)

Sketch r = (t,t, {

)

Solution

It is a straight-line wedge in the plane spanned by x = y and the z-axis.

VA

A

Example (6)
Sketch r=(t,t%,0’ -t)

Solution

Factorising this gives
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r=(650 1) = (t,tz,t(tz - 1))

That is

(x,2) = (6,05t (¢ -1))

If it were that z=0 this would describe a parabola y =x* in the xy-plane. The value

of z represents the height above or below this parabola z = x(x2 - 1) . This is a cubic

function with roots at 0, 1 and -1. The curve lies above and below the parabola y = x?

in the xy-plane.

y=x?

/ (1, 1, 0) when t=-1
>y

\(l, 1,0) when t=1

Differentiation of continuous vector functions

First Derivative

Let r(t) = (f1 ().£:(0).f; (t)) be a continuous vector function of t, then

(i 4 21)

dat \dt ae " dr

is the first derivative of r(t). This first derivative is also a vector. To show this we must
show that [%%%J is (a) a triad of scalars, (b) invariant under translation, and (c)

satisfies the transformation law %r’:(au)%r where the g; are the direction cosines of

Ox'y'z' relative to Oxyz and 1’ = (aij)r.
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Proof

() This is self-evident.
(b) Let F(t) be translated by a. Thus r'=a+F(t). Then
ar d
o E(a +F(t))
= ia + dar [since a is a constant |
dt dt
= % [also since a is a constant |
_(df, df, dfs
de’ dt’ dt
all alZ al3
(0 Let A=(a,.j) =|a, a, a,| be the transformation matrix of the rotation of

az dzp Oy

axes. Let r'=(a,)r where r(t)=(f,(t).f,(t),f;(t)) is a vector function of t.

Then
a’ d
dt = E (au)
= (aij)% [Since the a; are constant]

Example (7)
Verify that the curve

r(t)=(x,y,z)=(acost,asint,1) (see example (1))

under the transformation matrix

11
2 2
11
2 2
0 0 1

which represents the transformation when a set of axes is rotated clockwise (i.e. from

the x-axis to the y-axis) through an angle of % about the z-axis, obeys the

d

. d
transformatlon law —r'=(a;)—r.
dt ( “) dt

Solution
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11
\/? \/15 acost cost +sint
. al .
r'=(a,)r=|-—= —= 0/ asint |=—=|sint-cost
( J) NN ) N |
0 0 1
ir’=i i(cost+sinl‘sint—cost 1) =i(cost—sintcost+sint0)
dl_ dl_ 2 ’ ] \/E ’ ’
11
202
d 1 1 .
(av)—r— -—= —= 0|=-(acost,asint,1)
dt 22 dt
0 0 1
11y
2042
o1 1 0 a(fsint,cost,O):i(costfsint,cosHsint,O):ir
2 2 2 dt
0 0 1

Higher derivatives

The second and higher derivatives are defined accordingly. For example, if

r(6) = (A ()L (0).F:(0)

Example (8)

2

then —r=—

d’ d(d

dt

a’f, df, dif,
dar?’ dr*’ dr?

et dt

(i) )

Find dr and dr where

dr dr’
(i)
(ii) r= (t,e‘,e’f)
Solution

®

dt
ax

t,e',e

(ii)

r = (cos zt,2sin xt,t)

r = (cos 7t,2sin xt,t)
(-zsinzt,2z cos zt,1)

= (-2’ cos zt,~27" sin 7t,0)

© blacksacademy.net

'



r= (l,e’,fe’t)

r”:(O,e‘,e")

Example (9)

Given %:(—e" (cost +sint),e” (cost—sint),O) and r(0)=(10,0) find r(t).

Solution

Integrating % by inspection or by parts

r(t)= (e" cost+ A,etsint + B,C)

When t =0 we have C =0 and

1+A=1=> A=0
0+B=0=> B=0

Hence r(t) = (e" cost,e' sin t,O). It is a spiral in the xy-plane that infinitely spirals in.

VA
A
__________________ ‘\—\ .
0

Differentiation Rules

d da db
E(a+b)_E+E

d g _df, | da
dt(fa)_ dta+fdt

d da db
E(a‘b)—a'b+a‘a
d da db

—(axb):—xb+ax—
dt dt dt

These are all proven by writing out the derivatives in component form.
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Orthogonality result

A . . . da . . A
Let a be a unit vector. An important result is that the vector a is perpendicular to a,

provided that % #0 and a=0. To show this we start with the identity

a.a=|a =1 since [a|=1

Differentiating this gives

d . -
“(3.a)=0
dt(a a)

B ava. B
dt dat
da .
2%2.4-0

dt

So, if % # 0 this implies that % and a are vectors that are perpendicular.

Remark: this would apply if a were any vector of constant length, so that the length of a is not
a function of the parameter t. However, if the length of a varies with the parameter t then the

result does not follow.

Interpretation of the first derivative as the tangent to a curve

Let r(t) be a continuous curve, and let PP, be a cord joining the points P and P, on this curve.

The tangent at P, is the gradient of this cord in the limit as P — P,.

That is the tangent is }Hln{PPO} However

0
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dt -1, -1, -1,
PRLR
=t t—to
PR

So % is tangent to the curve, C. Furthermore, % points in the direction in which t

increases; i.e. in the direction in which the curve C is traced out as tincreases. Let

. . n .
n= % then n is tangent to C and n = ﬂ is a unit tangent vector to C. We proved above that
n

if a is a unit vector then the vector % is perpendicular to a, provided that % =0 . This

- A ood o . .
means that the derivative of n, which is En is perpendicular to n.

Z A
d
ar®
~ 1D
n=—-—
(1)
P
. [24
r'kt)
4

Example (10)

Let r =(cost,sint,t)
Show that the vectors n=1'(f) and i’ = %ﬁ(t) are orthogonal.

Solution
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r = (cost,sint,t)

r= ar_ (—sint,cost,1)

dt
| =sin®t +cos’t+1=2
ﬁ:%:%(—sint,cost,l)
n = ;tA jz(fcost,sint,o)
~f1’=%(—sint,cost,l}~%(—cost,sint,0)=0

Therefore i and 1’ are orthogonal

Example (11)

2
(a) Find the unit tangent T to the curve r(t)= (lttzj
(b) Show that T and % T where T is the vector found in part (a) are
orthogonal.
Solution
dr
a T=—=(0,1,t
(@) Tt ( )
[T|=~1+1°
- 1
T= 0,1,t
N1+t ( )
(b) T-= -
(1 + t2 2 1 + t
-t 1 +1° - 1
1+l‘2 1+l‘2 1+l‘2 1+t2)
T
1+l‘2 1+t2 1+l‘Z 1+t2)

(1+t2) (1+t )

Hence T and %T are orthogonal.

Smooth, piecewise smooth and simple curves

© blacksacademy.net

13



Smooth curve

Intuitively, a smooth curve is one that does not suddenly change direction. Thus a curve

r(t):(x(t),y(t),z(t)) in the interval t,<t<t, is smooth if everywhere in this interval the

derivative % exists.

Piecewise smooth

A piecewise smooth curve is made up of pieces of smooth curves joined end to end.

Simple open curve

A simple open curve is one that does not cross itself. In this case the function
r(t)=(x(1),x(1),2(1))

is one-one (a bijection). That is, each point of r(t) corresponds to just one value.

Simple closed curve
A simple closed curve is a curve whose end points coincide but all other points correspond to

just one value of t.

Example (12)
Sketch the curve with parametric equation

r(t) = (t|cost,0) —31p<t<3r)

and show that it is piecewise smooth.

cost

Solution
The sketch is
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>

| | | | > X
27 —T T 2r

As the sketch shows r(t) is made of three smooth curves

r, (t) = (t,~cost,0) 73%&37%
1, (t) =(t,cost,0) —%stgﬁz

1, (t) =(t,—cost,0) %sts3%

Change of parameter

The curve r=r(t) may be given a new parameter t=t(s) where % #0 at all points in the

interval s,<t<s, and f,=t(s,),t, =t(s,). Hence s increases as t increases, t=t(s) is an

increasing one-one function, and the direction (orientation) of r=r(t) is preserved.

Arc length

Let r= r(t) be the piecewise smooth curve C. Let ds be a small increase along the cord of this

curve corresponding to small increases dx, dy and dz.

We have

ds =+Jdx* + dy* +dz*

and
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ds _
dt

dr| |(dx) (dyY dz]z
—| == = |
dt dt dt dt
Then the arc length along C from ¢ (fixed) to t, (variable) is given by
u ds
t)=| —-.dt
s()=], 5

b dxY (dyY (dzY
I3 ()

Intrinsic equation of a curve

For the curve r(t)= (x(t),y(t),z(t))
write the arc length from a (fixed) to t (variable) as
s(t)= L

This gives s as a function of t, which we can solve to get t as a function of s. So we can

r'(u) | du

reparametrize the curve r(t) by using s instead of t. This is the unit speed reparametrization

of r(t). Hence, by using arc length as the parameter, we define the intrinsic equation of the
curve.

B(s)=r(t(s))

Then the unit tangent vector is obtained from this intrinsic equation as

godr_ ﬁdlﬂj
“ds \ds'ds’ds

Example (13)

Given r = (acost,asint,bt) 0<t<2rx
(a) Find the intrinsic equation r(s) of the curve.
(b) Show that the derivative of r(s) is unitary.
Solution
(a) r =(acost,asint,bt)
%:—asmt %:acost %:b
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-G (%] (&)

:L: Ja? sin?t + a? cos*t + b? dt

= Na* + b ar

=(\/m)r:

:(\/m)t where t,=0and ¢, =t

Hence

=L s

va® +b?
Therefore, the intrinsic equation of the curve is

r(s)= (a cost(s),asint(s),bt(s))

S . s bs
=| acos| ———— |,asin ,
( [\/a2+b2j Ja® + b? \/a2+b2]

b _ S asi S ’ bs
(b) r(s) [acos[\hf”ﬂ]asm\/aerb2 N

T=dr(s)=[— asins acoss b J
ds V& 02 N 02 N+ p?

1 — - -
Ja?sin?s + a?cos?s + b =1

Ja*+b*

T =

Example (14)

T
For the curve «a(t)=|t,—=,—
0~[055)
(a) Find the velocity, speed and acceleration for arbitrary tand at t=1.
(b) Find the arc-length function S=S(t) based at t=0 and determine the arc

length of « from t=-1tot=1.

Solution

a(t):[t,%,i]
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speed =|v (1) =
a"(1)=(0~2,2)
d

5(6)= [jle ()

Arclength from t=-1tot=1

3 1
I=|lu+% :(1+1j7(flfljz2g
3, 3 3 3

37t 3
u:_[tlﬂfdu: L R
0 3,773

Example (15)

Sketch the curve o(t)=(tcost,tsint,t). Find the velocity, speed and acceleration of
alt).

Solution

B(t)=(tcost,tsint,0) describes a circle in the xy-plane. A particle moving along this

locus would be speeding up owing to the factor t and the circle would be steadily
widening. In

a(t)=(tcost,tsint,t)

the particle is also rising parallel to the z-axis at a uniform rate. Hence

a(t)=(tcost,tsint,t)

describes a helix in Enclidean E® space.
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a(t)=(tcost,tsint,t)

velocity = &' (t) = (cost —tsint,sint +tcost,1) at a(t)

speed = a'(t)‘ = \/(cost —tsin l‘)2 +(sint + l‘cosl‘)2 +1

=+Jcos?t —2tcostsint + t2sin®t + Sin?t + 26 Sint cost + t* cos?t + 1
=2+t

acceleration = " (t) = (-2sint -t cost,2cost — tsint,0) at a(t)

Example (16)

Show that the curve r(t)=(cosht,sinht,t) has arc-length function
S(t) =+2sinht and find a unit-speed reparametrization of r.
r(t)=(cosht,sinht,t)

%r(t) =(sinht,cosht,1)

speed = ‘%r(t)‘ =+/sinh?t + cosh?t + 1 =+/sinh?t + cosh?t + cosh® t —sinh®t =2 cosh

s(t)= J;ﬁcosh udu= [\/E sinh u}; =2sinht

Then

s=+2sinht = t =sinh™ (i]
2

A unit speed reparametrization of r is given by

B(s)=x(t(s))
=| cosh| sinh™ [ij ,sinh| sinh™ (ij ,sinh™! [ij
2 2 2
s s . s
=|.J1+>=,— sinh™| ==
[ "2 (ﬁ]]
This follows since cosh’x =1+ sinh’ x ; hence

2
h?|sinh™| - || =1+ sinh?|sinh | - || =145
Ccos (Sll’l (\/Ejj + SIn [Sln [\/E + 5

Example (17)

Let u, and u, be unit speed reparametrizations of the same curve r(t). Show that
there is a number [such thatu,(s)=u,(s+I) for all s. Interpret the geometric

significance of L

Solution
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Let
u, (s)=x(t(s))
, (s*)=r(t(s*))

be two unit speed parametrizations of r(t). Then

S= J: r’(u)‘ du

t
§* = J
&

Letl:s*fszb[:Z

r'(u)|du

r'(u)|du 7J'

t
4

r' (u)| du = J:Z

r'(u)|du = arclength from t, to t,

Solving I =s* s for s *
s*=s+1=s+arclength from t, to t,
Hence

u,(s*)=u,(s+1)
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