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Compound pendulum 
 
 
A compound pendulum is a body made of two or more masses connected together and 
swinging freely about a smooth horizontal axis.  The simplest case would be when 
just two masses are connected. 
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However, there may be more than two masses, and a compound pendulum could be 
made of an irregular lamina. 
 

 
 
This can be considered to be a compound pendulum, since the lamina can be thought 
of as being made up of a large number of smaller segments, each with their own mass. 
 
The problem of the compound pendulum is essentially to find its period of oscillation 
(or equivalently, to find its angular frequency).  This problem is solved by reducing 
the compound pendulum to a simple pendulum to which it is equivalent.  This is done 
through energy considerations as shown in the example that follows. 
 
The crucial things to remember are 
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 i
Gravitational potential energy is found from the usual formula

where  is the height of the centre of mass above some reference point.
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Kinetic energy is given by

where  is the moment of inertia of the object, and  is the angular velocity 

that the line joining the centre of mass to the pivot point makes with the vert
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The point of this type of problem is captured by the observation that the expression 
for the moment of inertia of an object, I, replaces mass in the usual formula for linear 
kinetic energy.  Since the moment of inertia has replaced mass, we need to be able to 
find it.  In problems of this type we usually start with the standard moments of inertia 
for objects such as discs, rods and rectangular laminas, and derive the moment of 
inertia for the composite body using the parallel axis theorem.  Hence, we need to 
keep the parallel axis theorem also in our minds: 
 
 iii  

The parallel axis theorem states that, supposing the moment of inertia of a body M 
about an axis passing through its centre of mass is Mk2, then its moment of inertia 

about an axis parallel to this first axis but at a distance d from it is  2 2M k d . 
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Since the system is assumed to be frictionless, total energy is conserved.  Hence,
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   
with solution

sin

where  is the angular frequency, and  is the phase shift.
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This assumes that the aim of the problem is to derive the equation of simple harmonic 
motion from the data presented in the question.  However, other questions involving 
energy conversions can be set, but these follow the same principle that total energy is 
conserved. 
 
Just a note about the use of the symbol  .  This symbol is used here to denote 
angular frequency.  This is the angle swept out per unit time, and is a constant for the 
particular oscillation described by the simple or compound pendulum (or object under 
simple harmonic motion generally).  This symbol is also used to denote angular 
velocity 
 

d

dt

     

 
which is a variable that depends on time, and is maximum as the pendulum passes 
through the vertical and zero at the points of maximum angular amplitude.  Because 
of the possible confusion of having the same symbol to designate two different 
mathematical concepts, we advise you in this context to use   to denote the angular 
velocity, and  to denote the angular frequency. 
 

Example 
 
(i) A disc of mass m and radius r is suspended from a point A on its rim.  

The centre of the disc is the point O.  Initially, the disc is hanging so 
that the line OA is vertical.  Assuming that the point of contact is 
frictionless, and that the disc can be treated as a uniform lamina, show 
that when the line OA is displaced slightly from the vertical by an 
angle  that the disc oscillates with simple harmonic motion, and find 
an expression for its angular frequency. 

 
(ii) The disc is now stopped and positioned so that the line OA makes an 

angle of 2
  with the vertical.  It is then released.   Find the angular 

velocity of the disc as OA first becomes vertical. 
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Solution 
 
To solve this problem we must first find an expression for the moment of 
inertia of the disc about the pivot point A.   
 
The parallel axis theorem states that, supposing the moment of inertia of a 
body M about an axis passing through its centre of mass is Mk2, then its 
moment of inertia about an axis parallel to this first axis but at a distance d 

from it is  2 2M k d . 

 
The moment of inertia of the disc is 
 

21
2discI mr  

 
The disc is at a distance r from the pivot point, A.  Hence 
 

2 2 231
2 2AI mr mr mr    

 

Let  be the angular velocity
d

dt

  , then the kinetic energy of the disc when 

it makes an angle   with the vertical is given by 
 

 221
2KE I    
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At this point the centre of the disc, which is its centre of gravity, has risen 

cosr r  , so the gravitational potential energy of the disc is 
 

 cosU mgh mg r r     

 
Since the system is frictionless, total energy is conserved, so 
 

   
2

1
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where  is a constant.
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On differentiating both sides 
 

sin 0I mgr     
 
(The derivative of E¸ the constant energy, is zero.)  On dividing by   and 
rearranging we obtain 
 

sinI mgr    
 
This is the equation of motion for the body.  As already indicated, here 
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If the angle of displacement is small, then sin   hence 
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This is the equation of simple harmonic motion, and has angular frequency 
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The centre of mass is raised to an intial height  above its equilibrum position. It acquires

 joules of gravitational potential energy.

As before the moment of inertia is

The kinetic energy of

r
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 the disc is given by

The gravitational potential energy is converted to kinetic energy when the disc has falled

so that the line OA becomes vertical.  Hence
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Example (2) 
 
A uniform rod, AB, has mass 6m and length 4l.  It is suspended so that it can 
move freely about a smooth horizontal axis through A.  A further particle of 
mass 4m is attached to it at B.  From a position of hanging at rest in 

equilibrium, it is given an initial angular velocity of 3
g

l .  Find the 

maximum height to which the line AB rises. 
 
Solution 
 
The moment of inertia of a rod about an axis perpendicular to the rod and 2l 
distant from its centre of mass is given by 
 

2

3

ML
I   

 
Here the rod has a mass 5M m  and a length, 4L l , hence its moment of 
inertia is 
 

 2
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The moment of inertia of a particle at a distance r from an axis of rotation is 
given by  
 

2

Here 4  and 4 ,  hence

I Mr

r l M m


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 2 24 4 64particleI m l ml    

 
The total moment of inertia for the rod and particle is, therefore 
 

2 2 28 64 72rod particleI I I ml ml ml      
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Let the angle made by the rod AB with the vertical at the moment of 
instantaneous rest be .   Then, when the rod has risen to this height, it has 
acquired 2 2 cosl l   joules of gravitational potential energy.  At the same 
time the particle has acquired 4 4 cosl l   joules of gravitational potential 
energy.  The total system has  
 

     6 2 2 cos 4 4 4 cos 28 1 cosU mg l l m l l mgl         

 
joules of gravitational potential energy. 
 
The initial kinetic energy is 
 

2

2 21 1
2 2 72 123E
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 

  

 
The kinetic energy is converted to gravitation potential energy, hence 
 

EU K  
 
On substitution 
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Compound pendulum and its equivalent simple pendulum 
 
The method of solution in the first example would apply to any object of mass m  with 
centre of mass distant r from the axis of rotation.   
 



m

rr cos

r  r  cos

A

 
 
 
 
 
At time t the object will have risen cosr r  , where  t   is a function of time, 

so the gravitational potential energy of the disc is 
 

 cosU mgh mg r r     

 
Since the system is frictionless, total energy is conserved, so 
 

   
2

1
2 1 cos

where  is a constant and  is the moment of inertia.
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As before, on differentiating both sides 
 

sin 0I mgr     
 
On dividing by   and rearranging we obtain 
 

sinI mgr    
 
which is general the equation of motion for the compound pendulum.   
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If the angle of displacement is small, then sin   hence 
 

 1
mgr

I
    

 
This is the equation of angular simple harmonic motion, and has angular frequency 
 

mgr

I
   

 
If we compare this with the equation for the simple pendulum 
 

g

l
    

 
where l is the length of the simple pendulum, we can see that they are very similar. 

If in equation (1) we set 

I
L

mr
  

we see that it also takes the form 

g

L
    

The quantity  

I
L

mr
  

is called the length of the equivalent simple pendulum. 

This means that if we know the mass, m,  of the object, the distance, r, of the object’s 
centre of mass from the axis of revolution, and the object’s moment of inertia, we can 
find the object’s equivalent length as a simple pendulum.  On substitution into the 
simplified pendulum equation, we obtain its angular frequency, or equivalently, its 
period. 
 
Alternatively, we obtain any one of the terms, I, m, and r given the angular frequency 
(or period) and two of the others.  So we could “work backwards”. 
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Example (3) 
 
In the first example, find the length of the equivalent simple pendulum. 
 
Solution 
 
The solution to the first example was  
 

2

3
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which gives 
3

2

r
L   

 
Alternative, recall that the moment of inertia was 
 

23
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Hence, on substitution into 
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