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Axiom Systems 
 

 

Proof 
 

Mathematicians make use of results and theorems.  These are statements of general truth that 

capture some part of our mathematical knowledge.  These statements are called theorems.  (They 

may also be called lemmas, results  or propositions.)  Theorems are established by proofs.  For 

example, the proof that the angle sum of a triangle is 180. 

 

Theorem 

The angle sum of a triangle is 180. 

 

Proof 

Let ABC be any triangle, with angles a, b and c respectively. 

 

A B

C

a b

c

 

 

Extend the line AB to the point X as shown in the following diagram and construct a line, 

BY, parallel to AC passing through B. 

 

A
B

C

a b

c

X

 

 

Then the angle CBY  is equal to the angle c since they are alternating angles; and the 

angle Y BX  is equal to the angle a since they are corresponding angles.  However 

    180b CBY Y BX  
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since these angles add up to the angle subtended by a straight line, which by definition is 

180.  Hence    180b c a and the angle sum of any triangle is 180. 

  

This is an example of a constructive proof.  It illustrates the general principles of a constructive 

proof.  Firstly, the constructive proof builds on definitions and axioms. 

 

 Definitions 

 The angle subtended by a straight-line is 180. 

 A triangle is a plane, closed figure of three straight lines. 

 

 Axioms 

 Alternating angles are equal 

 Corresponding angles are equal 

 

Secondly, the constructive proof begins with the statement, “Let…”.  This introduces an arbitrary 

object (or figure).  The only property assumed of this figure is that it is a triangle, so whatever is 

true of it is true of all triangles.  The constructive proof rests on the idea of taking an argument 

true of any object to be also true of all objects of that kind.  This is how the generality is created. 

 

 

 

The quest for a foundation of knowledge 
 

In logic an argument starts with one or more statements that are assumed or asserted to be true.  

These statements are called premises.  From these premises, a conclusion is drawn.  Any 

argument is said to be valid if the premises force the conclusion to be true.  That is, if the 

premises are true, then the conclusion could not possibly be false.  When this is the case we say that 

the premises entail the conclusion, or that the conclusion is deduced from the premises.  Here is 

an example of a valid deduction 

 

(1) If Lee Harvey Oswald shot President Kennedy then the last bullet he fired wounded three 

people (one of whom was President Kennedy). 

(2) The last bullet Lee Harvey Oswald fired did not wound three people. 

(3) Therefore, Lee Harvey Oswald did not shoot President Kennedy.1 

 

                                                 
1 This argument is taken from Oliver Stone’s film, JFK.  In that film the statement (2) is derived from another 
premise :  (X) Under the circumstances in which Oswald fired, it is not possible for a single bullet to wound 
three people. 
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This argument is valid, in the sense that if the premises are true, then the conclusion could not 

possibly be false.2  Here statement (3) is justified by means of an inference from statements (1) and 

(2).  The first statement (1) has the form of a conditional: if ... then ... 

 

If P then Q 

 

where P = “Lee Harvey Oswald shot President Kennedy”, and Q = “The last bullet Lee Harvey 

Oswald fired wounded three people”.  Here P is called the antecedent of the conditional and Q is 

called the consequent.  In symbols this may be written, P Q .  In the second statement (2), the 

consequent Q is denied; in other words, it is asserted that Q is not true, in symbols Q .  The 

inference is to (3), that P is also not true, in symbols P .  The whole argument can be written 

symbolically as 

 






P Q

Q

P

 

 

Proofs are made of inferences, and together these are used in mathematics and logic to justify 

conclusions.  The process of justifying mathematical statements cannot be separated from the 

philosophical question of justifying beliefs in general.  Justification creates a chain of deductive 

inferences.  Statements are justified by showing that they follow logically from other statements.  

But this creates a problem of what we call an infinite regress.  Suppose statement Z is justified by 

inference from statement Y, and statement Y is justified by inference from statement X, and so 

forth.  At what point will the process of justifying one statement by deriving it from another stop? 

 

 Z is justified by Y 

 Y is justified by X 

 X is justified by W 

 and so on, ad infinitum. 

 

Diagrammatically we might represent this situation by 

 

Z  Y  X  W  ……… ??? 

 

The arrows point in the direction of logical inference; but the justification goes the other way – Z 

is true because it follows logically from Y, and so on.  One way we might get around this problem 

is to propose an alternative structure, Such as justification in a circle. 

                                                 
2 The argument is controversial.  However, the controversy arises from dispute regarding the premises.  The 
argument itself is valid, in the sense that if the premises are tr 
ue then the conclusion follows. 
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This may not seem any better.  As we are going around in a circle every statement is justified by 

appeal to every other – but that does not justify the structure as a whole.  Nonetheless, this 

alternative is proposed in what is known as the coherence theory of truth.  Yet, if we reject the 

idea of justifying in a circle (and the coherence theory of truth), then we need to stop the infinite 

regress in some other way.  We need to appeal to some kind of proposition that does not require 

justification by appeal to other propositions.  Such a proposition would be a self-evident truth.  A 

self-evident truth is one that justifies itself.  The belief that there is a self-evident foundation for 

knowledge can be called the axiomatic method.  An axiom in logic or mathematics is a starting 

proposition from which a theory is developed.  In the theory of knowledge whatever is self-

evidently true would constitute an axiom of knowledge.  Self-evident truths are also called 

postulates. 

 

 

Euclid’s postulates 
 

Historically, the axiomatic method began with the endeavour by Greek mathematicians to find a 

foundation for geometry.  This ran concurrently with the effort by Greek philosophers to find a 

foundation to knowledge generally.  The work in geometry was summarized by Euclid’s famous 

work The Elements. 

 

1. It is possible to draw a straight line between any two points. 

2. It is possible to produce a finite straight line continuously in a straight line 

3. It is possible to describe a circle with any centre and any radius. 

4. It is true that all right angles are equal to one another. 

5. It is true that, if a straight line falling on two straight lines make the interior angles on the 

same side less than two right angles, the two straight lines, if produced indefinitely, 

intersect on that side on which are the angles less than two right angles. 

 

The fifth postulate is also called the parallel postulates.  Euclid also advanced five “common 

notions” that are in effect also postulates. 

 

1. Things which are equal to the same thing are also equal to one another. 

2. If equals be added to equals, the whole are equal. 

3. If equals be subtracted from equals, the remainders are equal. 
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4. Things which coincide with one another are equal to one another. 

5. The whole is greater than the part. 

 

With the exception of the firth, these postulates were advanced by Euclid as being self-evidently 

true, and therefore, a foundation on which to construct the whole of geometry as a true body of 

knowledge.  The self-evident nature of the postulates is made by appeal to geometric intuition.  We 

directly “see” or “intuit” that geometric objects obey these rules.  However, the validity of the fifth 

postulate (parallel postulate) as a self-evident truth is questionable.  In fact, the Greeks also 

questioned whether it was self-evident and instituted a search for a proof of it from the other 

postulates, which they did regard as self-evident.  That search lasted over 2,000 years, and ended 

when in the C19th it was shown independently by Lobachevsky (1829), Bolyai (1831) and Gauss 

(not published) that the fifth postulate cannot be deduced from the other four postulates.  In 

other words, it is independent of them.  The mathematicians had developed alternative geometries 

in which the parallel postulate is not valid, and it is now an open question which of these 

geometries is true of the universe as a whole. 

 

 

Formal systems 
 

We have seen that the axiomatic method was originally motivated by a quest for self-evident 

truths, which were called postulates or axioms.  A system of axioms was held to embody truths 

about the real world.  The real world was a model of the axioms.  For example, real space was 

thought by the Greeks to be a model for Euclid’s postulates.  The modern approach is to detach 

the notion of absolute truth from axioms.  Axioms become assumptions; any structure that 

conforms to a set of axioms is a model for them.  From the modern point of view an axiom is a 

statement that is stipulated to be true for the purpose of constructing a theory in which theorems 

may be derived by its rules of inference.  It is a primitive statement of a deductive formal system 

and not distinguished from an assumption.  Both the axioms and the rules of inference may be 

given at the outset of the development of the theory as a formal system.  This means, that the 

system is given without specific interpretation or model, and the theorems are derived formally as 

if one were playing a game.  There is also a philosophy of mathematics known as formalism.  This 

asserts that there is no independent source of truth in mathematics and that all mathematics 

comprises only formal systems.  Formalism denies that any axioms are self-evident.  Evidently, to 

be interested in a formal system and to study it does not thereby commit one to a belief in 

formalism.  As the purpose of this chapter is to introduce axiom systems, the philosophical issues 

will be left to another place.  To study mathematics formally, axioms need not be justified, they 

are just assumed.  Further, an axiom system may admit of many models.  A set of axioms is 

inconsistent if it is possible to deduce a contradiction from it.  An axiom system is consistent if it 

is not inconsistent.  One way to demonstrate the consistency of a set of axioms is to show that it 

has a model. 
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Peano Postulates for the Natural Numbers 
 

 

The natural numbers 

The natural numbers are  

0 1 2 3 4 5 ...  

(Here we allow 0 to be a natural number.)  The set of natural numbers is the set 

  0, 1, 2, 3, ...  

We seek a set of axioms that embody our intuitions about this chain of numbers.  It is a sequence 

that starts with zero (0) and every member of this chain is followed by another by adding 1.  Since 

zero (0) starts the sequence it cannot follow any number in it.  Equality of numbers is captured by 

the principle that, if   1 1x y  then x y .   

 

Mathematical induction 

Another feature of the natural numbers, is that they permit proof by mathematical induction.  

Proof by mathematical induction is a two-step argument. 

 

Induction Step 

If the result is true for the kth number then the result is true for the (k+1)th number. 

Particular Result 

The result is true for n = 1 (or for some other starting value). 

 

From which the inference can be drawn: 

 

 Conclusion 

The result is true for all n (or for all n greater than the starting value). 

 

To illustrate the use of mathematical induction 

 

Example 

To prove  25 9 2n n  is divisible by 8 for all positive integer values n. 

Proof by mathematical induction 

Note, we use the symbol 8 N  to mean 8 divides into the number N, or N is divisible by 8. 

 

 For n = 1 

           2 2 15 9 2 5 9 2 25 9 2 32 8 4n n  

 Hence 
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   28 5 9 2 for 1n n n  

 The induction hypothesis is 

  28 5 9 2k k  

 Now for  1n k  

 

 

 
 

       

     

   

2 1 1 2 2

2

2

5 9 2 5 5 9 9 2

5 9 16 9 9 18 16

9 5 9 2 16

k k k k

k k

k k

 

 By the induction hypothesis  28 5 9 2k k , and also 8 16 , hence  

    28 9 5 9 2 16k k  

and the induction step holds.  Therefore, by mathematical induction the result is true for 

all n. 

 

A set of axioms that expresses these primary intuitions about the natural numbers is the Peano 

Postulates.   

 

Peano Axioms 

P1 0 is a natural number 

P2 If x is a natural number, there is another natural number denoted by x .  It is called the 

successor of x. 

P3 0 x  for any natural number x. 

P4 If    then x y x y  

P5 Principle of Induction. 

If Q is a property which may or may not hold of natural numbers, and if  

 (1) 0 has the property, and 

(2) whenever a natural number x has the property Q, then x  has the property Q, 

then all natural numbers have the property Q. 

 

 

 

Relations 
 

Relations 

A relation is a pairing of elements of a set according to a rule.  We may denote a relation by R or 

some other symbol.   

 

Examples 

1. Let ,x y  then   iff 5xRy x y . 
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 This generates the set 

              0,5 , 1,4 , 2,3 , 3,2 , 4,1 , 5,0R  

2. Let ,x y , and  iff 1xRy xy .  This generates an infinite set of pairs of numbers.  Some 

elements of this set are 

     
  

   

1 1
1,1 , 2, , 2,

2 2
 

 It is the set of elements x  and there associated reciprocals 
1

x
. 

 

Remark 

We may denote a relation by xRy  or by Rxy .  In some cases we adopt a special symbol, for 

instance, x y .  Equality of numbers, x y , is a relation. 

 

Equivalence relations 

Equality is an example of an equivalence relation.  When x y  the two symbols, x and y denote 

the same number.  But objects may be equivalent without being identical.  For example, in 

geometry, going up 1 step and along 1 step is equivalent to going along 1 and up 1, but the two 

paths are not identical; they are equivalent in the sense that starting from one given point reach 

the same given point.  They are equivalent translations.  Equivalence relations are often denoted 

by the symbol x y . 

 

Axioms for equivalence relations 

A relation x y  is an equivalence relation on a set X if it satisfies the following three axioms. 

E1 Reflexiveness axiom 

 For all x X , x y  

E2 Symmetry 

 For all   , , if  then x y X x y y x  

E3 Transitivity axiom 

 For all    , , , if  and  then x y z X x y y z x z  

A relation is an equivalence relation if it is reflexive, symmetric and transitive. 

 

Examples 

1   , ,  if  is divisible by 6x y x y x y . 

2.  , set of lines in the Euclidean plane;  if  is parallel to x y x y x y . 

3. x y  is an equivalence relation.   

 

Order relations 

We have seen already that  
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  0, 1, 2, 3, ...  

is an ordered set, meaning, every element, after the initial element 0, has an immediate successor.  

An ordered set is any set on which an order relation can be defined.  An order relation is a relation 

  on a set X that satisfies the following four axioms 

O1 For all  ,x X x x  

O2 For all    , , ,  if  and  then x y z X x y y z x z  

O3 For all    , ,  if  and  then x y X x y y x x y  

O4 For all   , ,  either  or x y X x y y x  

The axioms O1 and O2 are the same as the axioms E1 and E3 for an equivalence relation, but an 

order relation is something quite different from an equivalence relation; symmetry does not hold 

and O4 expresses the notion of order on the set.  An ordered set is also called a chain. 

 

Examples 

1. The set   0, 1, 2, 3, ...  is an ordered set, where   is the usual relation of ‘greater than 

or equal’ numbers. 

2. The set of all words in a dictionary is and ordered set.  The order relation is defined by 

the alphabet. 

3. The subset relation,   between sets is not an order relation on any set.  Given a set X and 

its power set (set of all subsets),  P X , then for any two sets  ,A B P X  we do not have 

  or A B B A .  For a specific instance of this, let   1,2X  then          , 1 , 2 , 1,2P X .  

The null set   is a subset of every element of  P X , but    1  and 2  are not ordered.  

The relation    on the set  P X  satisfies axioms O1 – O3 above, but not O4.  It is called a 

partial order.  A set that is partially ordered is called a poset. 

  

 

 

 

 

 

 


