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Arc length of a curve – in Polar coordinates 
 
 
Some curves are more conveniently given in polar form – that is, as functions of the 
angle swept out from the x-axis (in an anti-clockwise direction) and the distance from the 
origin. 
 



r

 
 
The function is expressed as a relationship between r and  . 
 
Our task is to find the length of this curve between two points P and Q. 
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We derive this formula in the usual way by dividing the curve into segments and 
approximating each segment by a straight line. 
 
Consider one such argument of length s . 
 

Q = r+ r, +   

s

P = r, 


 +
r

r+ r

 
 
As the angle   is increased by  , the distance of the curve from the origin changes by 

r  from  to r r r . 
 
To find an expression for s  we construct a right-angled triangle, thus 
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   2 2
Then s PZ ZQ    

 
Now PQ  is approximately equal to the arc length given by r . 
 
This approximation would be exact if we took the limit; that is 0  . 
 
The length PZ is the change in the r coordinate, i.e. PZ r  . Hence, 
 

   2 2
s r     

 
And in the limit the “infinitesimal” increase in arclength, ds, is given by: 
You should remove the reference to infinitessimal. 
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The arclength is given by the sum of small segments s . Hence, 
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This is the arclength formula in polar coordinates. 
 

Example 
 
Find the length of the cardioid with equation 

 1 cosr a    

 
Solution 
 
We visualise the cardioid by the usual technique of evaluating points and 
sketching 
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This gives us the cardioid:- 
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We are finding the line length as the angle sweeps out from 0 to 2 . 
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We recall that since cos 2 cos sin 1 2sin

that cos 1 2sin 2
Therefore
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