
 

 
 

Melampus 
 

Lagrange’s theorem and the logic of intensions 
 
 
 

1 Lagrange’s theorem 
 

There is an interesting problem concerning Lagrange’s theorem that I shall show is connected 

to the halting problem.  Let us first examine a proof of Lagrange’s theorem. 

 

Definition, left coset 

Let G be a group and H be a subgroup of G: H G .  For each element g G  and 

h H  form the element gh, which, by the closure of G as a group, is an element of G.  

Let   :gH gh h H  represent the set of every element of G formed by taking a fixed 

element g G  and combining it systematically with every distinct element h H . 

 

Equivalence of cosets 

The criterion for when xH yH  is given by:   1If  then x y H xH yH .  An equivalent 

to this is given by:   1If  then y x H xH yH  

 Proof 

 First we show:   1 1If  then x y H y x H  
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We will now prove in general that:   1If  then x y H xH yH  
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Partitions 

The cosets of H in G form a partition of G.  What this means is that if two cosets of H 

in G are not identical then they do not share any element in common.  The proof of 

this is by contradiction.   

 Proof 

Suppose 

xH yH  

are two cosets of H in G, but that they share at least one element in common.  

Let this common element be t.  That is 
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Thus, if two cosets of H in G share an element in common, then they must be 

completely identical.  Hence, the cosets of H in G partition G.  This means that every 

element of G is in one, and only one, coset of H in G.  Hence, the number of elements 

of each coset of H in G is the same.  That is, if  is a coset of  in  thenxH H G xH H .  

This means that their orders are the same. 

 

Lagrange’s theorem 

If G is a finite group and H is a subgroup of G, then the order of H divides the order 

of G. 



Formally: If is a subgoup of the finite group ,  then H G H G , where ... ...  stands 

for “divides into”.   

 Outline of the proof 

The outline of the proof is as follows: Let H be a subgroup of G.  That is 

H G .  Then the cosets of H in G partition (divide up) G in such a way that 

(1)  Each coset has exactly the same number of distinct elements as H. 

(2)  Every element of G is in one and only one coset of H. 

Hence,   the number of cosets of  in G H G H  

(The order of G is equal to the product of the number of cosets of H in G, and 

the order of H.) which means that the order of any subgroup of G must divide 

the order of G. 

 Proof of Lagrange’s theorem 

Each coset is formed by taking an element g of G and combining it with each 

distinct element h of H.  For each distinct h in H we get a different element gh 

in G. Indeed, if -1 -1( ) ( )g gh g gh  then gh gh  and thus h h follows. Hence, 

there is a  one-one correspondence between elements of H and elements of 

any coset xH of H in G.  Further, G is divided into a finite number of cosets xH 

of H in G.  Thus 

  the number of cosets of  in G H G H  

(The order of G is equal to the product of the number of cosets of H in G, and 

the order of H.) That is, 

H G  

The order of H divides the order of G, which proves the theorem. 

 

2 The problem 
 

Beeson writes about Lagrange’s theorem: - 

 

A test problem here is the theorem of LaGrange in group theory, according to 

which the coset of a subgroup of a finite group all have the same number of 

elements, i.e., are in one-to-one correspondence.  The proof of this theorem is 

very simple by ordinary mathematical standards, yet it seems to be too difficult 

for automated deduction; and the bottleneck seems to be that several different 

data types are involved.” (Beeson [1988] p.212)   

 

He lists these data types: - 

 

1. G, The type of group elements. 

2.  P G  The type of subsets of G 

3. C The type of functions from one subset of G to another 



  The one-one correspondence of cosets is of this type. 

4. “one needs either an operation leading from a subgroup H and element a of G 

to the coset aG, or one needs an operation leading from H to the type of 

cosets of H.”. 

 

This was written in 1988 and I have no idea whether the programmers since believe they have 

made progress with it.  I will show that all they can produce is an apparent simulation of the 

theorem on a glorified typewriter [1/2.3].  To do so, let me begin by revisiting the proof of the 

solution to the halting problem by the method of exits. [Theorem 2.2 proven in section 6 

above.] 

 

Proof of the solution to the halting problem by the method of exits 

The method of exits works by tracing back information from every terminus 

through the machine   1 1n n nT T Q .  In doing so we work around each loop in 

1nT , recording any 1-loop in it by an asterisk and each longer loop by a bar 

symbol.  These encode the possibility of a finite repetition of a configuration 

leading to an exit (halting configuration) as well as identifying the infinitely 

recurring non-halting configurations.  The problem is finite if the period of the 

maximal cycle in 1nT  is finite.  But if the period of the maximal cycle in nT  is 

finite then the addition of 1nQ  adds a finite number of loops to the maximal 

cycle; and the resultant maximal cycle and its period remain finite.  Therefore, 

the problem can be solved by the method of exits for 1nT . [3.4.5 and Chap. 3 

Sec. 6] 

 

The essence of this proof lies on a property of a decomposition of every maximal cycle in a 

machine.  This was result 4.9 of Chapter 3: - 

Chap.3 / 4.9 (+)  Result, decomposition of cycles 
Every cycle is may be decomposed into indecomposable loops.  The period a 

cycle is the sum of the period of its indecomposable loops. 

 

In essence this result arises from the finite decomposition of finite cycles.  Ultimately, any 

indecomposable cycle may be separated into two loops as follows: -   

 

i j

 

 

This process may be iterated.  Denote the sequence of the first loop by ‘1’, the state through 

which they are joined by ‘2’ and the remaining sequence in the second loop by ‘3’.  Then the 

join of two loops is symbolically represented by: - 



 

1 2 3

 

The composition of the two loops to produce a new maximal cycle has the form: - 

     1 2 2 3 1 2 3 2  

where I am using the notation of permutation groups.  The symbol ‘ 2 ’ represents the fact that 

in the maximal cycle we must travel through this linking state twice.  Now compare this with 

the regular composition of permutations using the same symbolism: - 

     1 2 2 3 1 3 2  

There is an immediate correspondence between the two compositions: the machine cycle 

 1 2 3 2  corresponds one-one to the permutation  1 3 2 .  We have the result: - 

 

 Result, equivalence of compositions 

A cycle in a machine may be decomposed iff the corresponding permutation 

may be decomposed. 

 

The proof of the solution to the halting problem by the method of exits given above adds 

another result: - 

 

 Result, equivalence 

The halting problem is soluble T iff any cycle in a machine may be decomposed 

into indecomposable finite cycles in finitely many steps. 

 

The halting problem is soluble, just as any permutation can be decomposed into 2-cycles: - 

 

 Result, permutations 

Every permutation is the product of its cycles. (Equivalently, every permutation can be 

uniquely expressed as a product of disjoint cycles.)  Every permutation is a product of 

2-cycles. (For a proof see Herstein [1975] p.78) 

 

We have also: -  

 

Cayley’s theorem 
Let Sn be the symmetric group on n elements.  Any finite group is isomorphic to 

a subgroup of Sn for some n. (For a proof see Herstein [1975] p.71) 

 

On examining Lagrange’s theorem in depth we may see that the underlying “fact” on which is 

built is already expressed in the notion of a subgroup: H G .  Lagrange’s theorem exposes a 

division property of this relation – it shows that the order of the subgroup H divides into the 

order of the group G.  Now this would not be possible unless G was the product of H and some 

other group – so that the underling “fact” on which the theorem is constructed is the 



decomposition of groups into cyclic subgroups.  The statement,  
G

G H
H

 is in the language 

of isomorphisms, and also introduces the symbol for a quotient group; Lagrange’s theorem is 

so much more than just the division relation; it is the statement that  
G

G H
H

 where H and 

G

H
 are both groups.  This is the same fact that underpins Cayley’s theorem and finds 

expression in the notion that every group is isomorphic to some subgroup of a permutation 

group.  This explains the underlying problem that the programmers were having with the proof 

of Lagrange’s theorem, because of a very deep link between it and the solution to the halting 

problem. 

It is interesting to investigate how the proof of Lagrange’s theorem does “work”.  The 

following is the lattice structure of the proof of Lagrange’s theorem: - 
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In this diagram inference goes up the page.  Conjunctions proceed down.  My analysis of 

Lagrange’s theorem is as follows. H G  stands for H is a subgroup of G.  The relation of 

H G  I take to be the conjunction of 

 

1  H is a group 

2  G is a group 

3  H G  

There is actually some ambiguity as to what the statement of Lagrange’s theorem is.  

Generally, it is taken as: If H G  then the order of H divides the order of G.  As it happens 

Beeson takes it as the statement on cosets H xH  and one might also interpret it as the 

statement  
G

G H
H

.  In the proof as I have it, there are two major intermediary steps. 

1. A proof that the set of all left cosets xH  partitions G. 

2. A proof of H xH  



Then Lagrange’s theorem follows from the conjunction of these.  To say that G is partitioned 

into a collection of sets is to say that every element of G is in one, and only one of the 

partitions.  This is not sufficient to prove Lagrange’s theorem because, on that basis alone, the 

partition could be uneven, and no result on the order of the partitions would follow.  So we 

need to add to that the statement that the partitions are all of the same size; that is H xH . 

The statement, H xH , does not appear to require that H is a group.  It does require that G 

is a group because the argument depends on combining each element of H with a fixed 

element of G and we require the group properties of G to prove that each element h H  

corresponds one for one with an element xh xH  where x G .   

The lattice diagram reveals the prima facie problem with any attempt to formalize 

Lagrange’s theorem.  According to this diagram, Lagrange’s theorem,  
G

G H
H

 is formally 

equivalent to the statement H G ; so the inference does not take place in the analytic logic 

built over the lattice.  It is an equivalence of names for the same lattice point, and one that 

translates one language, H G  (groups, subgroups, order) into another  
G

G H
H

 

(isomorphisms, quotient groups), or yet another  G H xH  (arithmetic, number theory, 

modulus, rings).  So what we are looking at is equivalence of languages constructed what is 

prima facie the logic of intentions; it is an inference whose whole purpose is to establish the 

equivalence of different conceptual ways of looking at an object’s (a group G’s) internal 

structure, where H G  already embodies the fact that is said to be its consequence – namely 

Lagrange’s theorem.  On a similar line of thought, I observe that the intermediary step: - 

1. Set collection  xH  partitions G 

is a statement that could in the theoretical sense be distinct as a lattice point from another 

assumption from which it follows, but in fact, in the context of the specific assumption, 

H G , cannot be so distinguished.  In other words, it is a kind of fictional lattice point, whose 

purpose in the logic of intensions is  to  be  recombined  (formation of meet)  with  the  lattice  

 

point H xH  to return to H G  but under a different description,  
G

G H
H

.  Once again, 

the whole argument seems to have more to do with sense and reference than with formal, 

analytic logic as such. 

The point that the programmers were stuck on, according to Beeson, is the proof of 

H xH .  Here is my version of that: - 

 

Each coset is formed by taking an element g of G and combining it with each 

distinct element h of H.  For each distinct h in H we get a different element gh in 

G. Indeed, if  gh gh  then -1 -1( ) ( )g gh g gh  and thus h h follows. Hence, 

there is a  one-one correspondence between elements of H and elements of any 

coset xH of H in G.   

 



(Here H does not need to be a subgroup, but could just be a subset.)  The proof works by 

pairing off elements of H with elements of xH  and hence appears to be a fundamental use of 

the pigeon-hole principle [Chap.15 Sec.3].  All groups are ultimately products of cycles, and 

for simplicity, suppose that H is a simple cyclic group; then   2 1, , ... , , 1nH h h h  so when we 

are pairing off the elements of H with the elements of xH we are literally going through the 

cycle or loop, and hence the application of the pigeon-hole principle.  Once we have finished 

one loop of H we must start over and start filling the “boxes” in xH a second time – loop for 

loop.  This suggests that the presence of loops (modules) within the Boolean lattice (implicit 

loops) embeds the whole of ring theory into the lattice and makes the lattice incomplete as a 

system of inference.  I note that in programs it is the loops that cause non-halting.  I remark 

also that Cantorian anti-diagonalisation argument is a species of the pigeon-hole principle 

applied to infinite sets.  We cannot fit all of one set into another; or if we take the bigger set 

and start to fill up the “boxes” of the smaller set, then we have something left over and have 

to start again. 

Every group can be embedded in a permutation group. A permutation is based on a 

loop, and then the loop can be taken in a clockwise or anticlockwise direction; finally, 

individual pairs of the loop can be inverted to obtain another loop.  I conjecture that it is 

because of these properties of permutation groups that transfinite ordinals do not express 

order invariance; the order in which the lattice points are taken is constantly being juggled.  

The root cause is the presence of the loops in the system.  These are conjectures.  I note also 

that the order or the sizes of the subgroups is not determined by H G .  That is, we may 

have in order of size   1
G

H G
H

 but also   1
G

H G
H

.  Also 
G

H
H

 is possible.  So there 

is constant juggling of the sub-rings generated by the lattice that I am predicting is the 

underlying source of order inversions.  
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