

Solution to the Halting Problem

MELAMPUS

Abstract

The Halting Problem is solved by complete induction on the number of states in any Turing

Machine. It is inferred that mathematical induction is a species of synthetic reasoning.

Black’s Academy Limited

Kington, England

© Black’s Academy Limited, March 2019

All rights reserved. No part of this

monograph may be reproduced, stored in a

retrieval system, or transmitted in any form

or by any means, electronic, mechanical,

photocopying, recording, or otherwise,

without the prior written permission of the

publisher.

Contents

1. Introduction 1

2. The method of exits 5

3. Solving the unsolved five-state hold-outs 9

4. Permutators, loops and the method of inputs 15

5. Proof of the Complete Criterion Theorem 20

6. Philosophical and cultural considerations 30

Appendices

1. The halting problem is not effectively computable 34

2. Turing machines 36

3. The Church-Turing thesis 37

4. Holdout machines used as examples 39

5. The B5 Champion 48

6. References 55

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

1. Introduction

Solution by mathematical induction is intuitively plausible

A machine of n states is designated .nT Figure 1 illustrates the solution for a

five-state Turing machine. In the figure, we consider the four-state 4T

machine to have been made by the addition of one state to a three-state

machine, 3T . This is illustrative of the iterative process that is involved in a

proof by mathematical induction. Halting behaviour is a consequence of a

tape configuration. Let 0 1, , ... , nQ Q Q denote states. Let kS denote the input

of a tape configuration at state kQ . For example, by 1 1000 10S  we denote

an input to a machine; the subscript shows where on the tape the machine in

state 1Q is scanning the symbol 0; the whole input is a tape configuration.

Suppose the instruction for 1Q is 0 : 1 then go to 2Q ; then the output, which

is a function of the program, the state and the tape configuration, is 2001 10 ;

the machine has moved to state 2Q An exit, denoted iX , is any output that

causes the machine to halt.

A complete criterion for an n-state machine is a specification of those tape

configurations for any inputs to the machine that cause that machine to halt,

specifying the exit at which it halts, and giving completely the tape

configuration at any given exit. It is intuitive that a complete criterion can be

written. (1) Finite and infinite strings of symbols represent finite information

that can be expressed by finite symbols. (2) The number of permutations of

steps through an n state machine is finite. Any loop can involve at most n

instructions. The tape configurations that lead to any given exit are

determined by finite symbols. (3) No loop is random. A machine that does

not halt has entered a loop in which the same tape configuration will

inevitably appear, even if the number of steps between states is large. There is

no infinitely non-recurring sequence of (random) tape configurations in any

Turing machine. The complete criterion for any machine may be written by a

backward trace from any given exit. This is here called the method of exits. If

the complete criterion is given for an n-state machine, then by the method of

exits, a complete criterion may be determined for an 1n  machine. There is

also a method of inputs, equivalent to the method of exits. The method of

inputs is used in the proof of the induction step.

There is a standard presentation of the Halting Problem

in Appendix 1. For readers not familiar with the theory

of Turing Machines there is a summary in Appendix 2.

Figure 1

Diagram illustrating the iterative procedure needed for

the inductive proof of the Complete Criterion Theorem.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

2

 Philosophical and cultural considerations

In would seem like insanity to attempt the proof of a problem that has already

been proven to be impossible to solve. But an impossibility proof, like any

other proof, has assumptions, and if the assumptions are false, then the

conclusion does not follow.

The impossibility proof for the Halting Problem is a proof that within a certain

mathematical system, one that is computable, there cannot be a solution to the

Halting Problem. Hence, the impossibility proof is prima facie a proof that a

computer cannot solve the Halting Problem and no more. It does not directly

relate to the human capacity to solve problems, and only can be made to so

relate if one adopts the premise that human beings can only solve at most all

those, and only those problems that computers can solve.

Therefore, it may not be assumed without circularity that human reason is

only capable of solving at most all those problems that a computer can solve.

It may also not be assumed without circularity that mathematical induction is a

species of computable algorithm.

In solving the Halting Problem by mathematical induction we not only

demonstrate that the human mind can solve a problem that a computer cannot

solve, we demonstrate that mathematical induction is not a computable

algorithm. Therefore it cannot be assumed without circularity that a solution

by mathematical induction is impossible. The impossibility proof is only a

proof that a computer cannot solve the Halting Problem: it makes no reference

whatsoever to mathematical induction. It does not circumscribe or limit

human reasoning.

But that there could be such a solution to the Halting Problem must surely

produce a cultural shock: why in the history of the problem has such a simple

solution never been considered? The answer will be due to cultural forces

that made it seem insanity to even consider such a solution.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

3

 Mathematical Induction and algorithms

Mathematical induction, also called complete induction, is an argument that

proceeds from two premises to establish a property concerning all natural

numbers. One of the most elementary results established by mathematical

induction is the formula for the summation of the series:

 1
1 2 3 ... 1

2
n n n      . This algebraic formula is clearly algorithmic

and it tells us how to compute the sum of consecutive numbers by means of a

short-cut: the long summation on the left is converted to a simple

multiplication on the right. The inductive argument establishes that we know

that this algorithm correctly computes the summation up to any number n.

Thus, prima facie, mathematical induction is a device for establishing truth

and knowledge and is not an algorithm in itself. The knowledge that the

formula is correct is established in the inferential movement from the first two

steps in the argument to the conclusion.

Now let us consider the situation that arises in the proof that of the

impossibility of a solution to the Halting Problem. What this proof of

impossibility establishes is a relationship between two Turing machines. It

does not state that the Halting Problem is insoluble for all machines, or even

any particular machine, but merely establishes that there could be no one

machine that could solve all Halting Problems, including its own. It also

establishes that if Turing machine A provides a solution to the halting problem

of machine B, then A must have more states than machine B. Thus, another

formulation of the conclusion is that any machine that could solve the halting

problems for all machines would have actually infinite states. Of course, that

would not make it a machine, since all machines have finite states. But is this

situation really so different for algorithms in general? The expression

 1
1 2 3 ... 1

2
n n n      is true for all natural numbers, but it does not

follow that there ever has been built a machine that actually has computed the

sum of all natural numbers, and given that the collection of all natural

numbers is infinite, any machine that applied this formula to all of them would

also require infinite states. The impossibility proof for the Halting Problem

(Appendix 1) makes only a common situation more explicit in the case of the

Halting Problem, because it constructs a relationship between two machines,

and says any machine A that could solve the problem for machine B is

“bigger” than machine B – that is, has more states.

Mathematical Induction

Mathematical Induction is the argument used in Number

Theory and throughout mathematics that has the

following form.

Particular Result: the result is true for 0k  (or for some

other starting value).

Induction Step: if the result is true for the number k then

the result is true for 1k  .

Conclusion: the result is true for all numbers n (or for all

n greater than the starting value).

In symbols:

 
   

   

0

1

P

P k P k

n P n

 



The impossibility of a solution the Halting Problem

A standard version of the impossibility proof to the

Halting Problem is given in Appendix 1.

The Church-Turing Thesis

The standard result that all computable algorithms are

Turing machines is given in Appendix 2.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

4

 Mathematical induction is a species of inference that establishes truth and

knowledge. An algorithm is a mechanical procedure that on occasion is used

to apply the fruits of such inferences to compute results. No computer has

been constructed that could churn out algorithmically all the results that could

be established by mathematical induction, and only the existence of such a

machine would suffice to prove that mathematical induction was itself an

algorithm. That some inductions may be simulated by computers and even

some new results established by such simulations does not prove that

induction itself is algorithmic. Simulation may be nothing much more than a

species of typing.

But these remarks are only intended to demonstrate that as a possibility

mathematical induction is not algorithmic. It would be as circular to assume

this result as it would be to assume its opposite, because it is conceivable that

there is a mechanical and material substratum to the human mind at which

level all operations of the mind are algorithms. However, if there is an

inductive solution to the Halting Problem, then such a result would rule out

that consideration.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

5

2. The method of exits

A Turing tape is a linear tape, marked into squares, which is potentially

infinite in both directions. Each square of the tape contains either the symbol

0 or 1.

Here we have been explicit in defining the tape to be potentially infinite. This

is in contrast to the description of the tape offered by Boolos and Jeffrey,

which refers to an “actually infinite” tape.

A tape configuration (or “configuration” for short) is an assignment of the

symbols 0 and 1 to a portion of the Turing tape. (We shall also identify in the

tape configuration the state the Turing machine is in, and which symbol it is

scanning.) Since the tape is potentially infinite, we must have devices for

describing potentially infinite portions of the Turing tape.

The expression 0 ... 000 ...= is an assignment of 0 to the whole potentially

infinite tape: in it, every square of the tape both to the left and right contains

the symbol 0. The double over-bar represents an assignment to a potentially

infinite portion of the tape. We allow that the meaning of a symbol is

unambiguously modified by context. Thus, the configuration 01010

indicates that a portion of the tape contains the symbols 101 and that to both

the left and right of that configuration the tape is assigned a potentially infinite

sequence of 0s. The expression 0 is an assignment of 0 to a finite but

indeterminate portion of the Turing tape. It is a finite string of 0s on the tape,

but the actual number of 0s is not known. It may be zero.

When an explicit configuration is given, for example, 010110 , it is presumed

that the assignment to the left and right of this configuration is undetermined:

that is, we do not know what the symbols to the left and right of this portion of

the tape configuration are. Thus, an assignment is a determination of an

otherwise undetermined tape. The whole tape may be determined or

undetermined. For example, the configuration 01010 determines the whole

tape. It states that there is a portion of the tape definitely containing the

configuration 101 , and that to both the left and right of this portion there is a

potentially infinite sequence of 0s. The Halting Problem is solved by

determining what configurations on an otherwise undetermined tape cause a

given Turing machine to halt at a given exit.

The potential and actual infinite

The potential infinite: no matter how large a (natural)

number we have reached it is always possible to count to

a higher one by adding one more. Counting is

inexhaustible.

The actual infinite: the entire process of counting forms a

completed totality. A completed collection of infinite

objects is given actually in its entirety.

Of these two concepts it is that of the actual infinite that

is problematic. The potential infinite is implicit in direct

experience, but the actual infinite is a construct of

metaphysics or (mathematical) science required to define

the idea of a limit terminating in a real number. In the

history of these concepts, Aristotle legislated against the

use of the actual infinite, though he accepted the potential

infinite, and the consequence was that Greek science

never developed the calculus. In mathematics, the

potential infinite is primarily a concept of number theory,

and the actual infinite is primarily a concept of analysis.

From Boolos and Jeffrey

“We suppose that the computation takes place on a tape,

marked into squares, which is unending in both

directions – either because it is actually infinite or

because there is a man stationed at each end to add extra

blank squares as needed.” (Boolos and Jeffrey [1980]

pp.20 – 21.)

The gloss after the introduction of the actual infinite here

confirms that it is only the potential to add one more

square to the tape that is required for the Turing tape.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

6

The expression 01010 indicates that the leftmost part of the Turing tape is

undetermined; there then follows a finite but unspecified number of 0s; this is

followed by a sequence of symbols 101 ; finally the rightmost part of the tape

is completely determined by a potentially infinite sequence of 0s. The

expression 0 encompasses the possibility that 0n = , and that there are in fact

no 0s on that part of the tape to which this symbol is assigned. The expression

00 indicates a finite sequence of n 0s, but one where there is at least one 0;

that is, 1n  . The expression 00 indicates an undetermined, finite, even

sequence of 0s on a portion of the tape; the expression 000 indicates an

undetermined, finite, odd succession of 0s. These symbols are required to

describe the action of instructions of given states, as will be made clear below

in the examples. The expression ()001 001 , 0
n

n=  indicates the finite but

indeterminate repetition of the sequence 001 on a part of the Turing tape.

The expression
01

111

  
 
  

 indicates a finite but indeterminate repetition of the

sequences 01 or 111 in any (random) order.

By standard configuration is meant a situation in which the machine either

starts scanning a zero on an otherwise blank tape or ends scanning the leftmost

of a block of 1s on an otherwise blank tape. The Halting Problem is the

problem of designing an effective procedure for identifying Turing machines

which never halt, once started in their lowest-numbered states on blank tapes.

In our notation the starting standard configuration is expressed by 00 , and it is

this that is referred to as “starting in standard configuration”. The Halting

Problem cannot be solved in isolation from a larger problem, that of what

happens when a Turing machine is started for any given configuration in any

of its numbered states. We consider a potentially infinite number of non-

standard starting configurations. Any such non-standard starting

configuration may be considered as an input to a state scanning a given

symbol of a given tape configuration. We designate the states of an n-state

Turing machine by
0 1 1, , ... , nQ Q Q −

, and inputs at each of these by

0 1 1, , ... , nS S S −
. Thus, the input of the standard configuration to state

0Q is

designated: 0 00S = . An example of a non-standard input is: 1 10101S = ; this

indicates that while in state 1 the machine is scanning a 0, immediately to the

left of this is a 1, then a finite but indeterminate string of 0s; beyond that, the

tape is undetermined – we do not know what it contains.

Repeating tape configurations

As indicated in the text, the expression
01

111

  
 
  

 indicates

a finite but indeterminate repetition of the sequences 01

or 111 in any (random) order. In this, every possible

permutation being allowed. Thus, this expression has

many instances. Examples are:

01 111 01 111 01 111 111 01

111 01 111 01 111 111 111 01

Here the gaps between the different blocks are introduced

solely for the sake of clarifying the meaning. These

expressions are needed to describe the effect of loop

constructions in a Turing machine upon a tape

configuration. There are manipulations of these symbols

that are direct consequences of their definitions. For

example, 100000 10000 10000= = .

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

7

 A Turing machine is specified by a collection of instructions, where every

instruction comprises an ordered quadruple: (1) the number of the state it is in;

(2) the number of the state it next moves to; (3) the symbol that is being

scanned; (4) the action to be taken: , , 0, 1L R (Move left, move right, write a

0, write a 1). Since there are only two symbols used on the tape, to every state

there is assigned at most two instructions. If there is no instruction assigned

for a state scanning a given symbol, then the machine halts. An exit, denoted

iX , is any output that causes the machine to halt. Flow graphs, which are

diagrammatic representation of Turing machines and their instructions, are

vital heuristics, and make everything clear.

A trace is any record of the step-by-step effect of a given input. The input of

systematically generated permutations of the tape to generated traces is called

the method of inputs.

Complete criterion

A complete criterion for an n-state Turing machine is a specification of those

tape configurations for any inputs that cause that machine to halt, specifying

the exit at which it halts, and giving completely the tape configuration at any

given exit.

Complete Criterion Theorem

For any finite Turing machine of n states, it is possible to write a complete

criterion. The solution to the Halting Problem is an immediate corollary of

this theorem. The theorem is proven in section 5. When we do so, we will

show that complete criteria can always be written by the method of inputs, but

in practice the most efficient method for determining a complete criterion is

given by the method of exits.

The method of exits

This involves tracing backwards from a given exit by using an if-what

procedure: if the machine exited and halted at such-and-such a state, then what

tape configurations at given inputs could have led to this outcome? On an if-

what basis, we determine at each step all the possible tape configurations that

could have led ultimately to that exit. The method of exits generates a

structure known as a tree. At each stage (or level) of the tree there is the

possibility of branching. Since a machine is finite, no state can have infinite

inputs from other states.

Flow graphs. Flow graphs are diagrams of Turing

machines introduced by Boolos and Jeffreys [1980].

Figure 2. Example of a flow graph

Example of a trace. The trace for input
0 00011 0S = is:

0 0 0

0

1

1

1 1 1

0011 0 001 10

00 110

01110

01110

0111 0 01110

S

X

=

=

Method of exits. The following is a backwards trace for

the machine whose flow graph is given in figure 2.

1

1 1

1

0

0 0 0

END END END

Exit at

0

1 10

0 10

01 10 011 10 011 0

0 :1

X

X =

On an if-what basis, we determine at each step all the

possible tape configurations that could have led

ultimately to that exit. Since there are two instructions

leading into state
1Q we must consider that either might

have led to the outcome. In the first instance since we

have
10iX = then we could not have entered this state

and configuration by having immediately read the

instruction 0 :1 , so this is an impossibility in the

backward trace and we show that CONTRADICTION by

marking that option 0 :1 in red. The expression
11 10 is

a standard way of representing the action of the looped

1: R instruction for
1Q . In order to have reached the

exit, the machine may have started scanning the leftmost

1 of a block of 1s; the tape to the left being

undetermined. In the backward trace, the only next

possibility is the instruction 0 :1 ; the trace takes us back

to
10 10. Finally, we may have reached this state from

the action of the instruction 1: L , but in considering this

there are three possibilities, as represented by

0 0 001 10, 011 10, 011 0 because the initial scanned 1 may

appear anywhere within a finite block of 1s. From this

point the backward trace cannot continue, and this is

marked in red by END.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

8

 To prove that the Halting Problem is soluble we have to demonstrate (a) that

the length of each branch of the tree is finite – that is, each branch terminates

either in an END, a LOOP or a CONTRADICTION; (b) the width of the tree

is always finite – the tree only ever has finite branches. The term LOOP

should already be intuitively clear. In a computer program we often write

loop instructions; for example, while ... , do The idea here is to infer from

the repetition of a tape configuration that a loop has been entered.

The result of the application of the method of exits to any machine enables us

to write its complete criterion. The complete criterion records all the possible

halting configurations; from it we may infer all the non-halting configurations.

Since any machine either does or does not halt, the set of all configurations of

the Turing Tape is partitioned by the machine into two sets: the set of

configurations that halt, and the set of configurations that do not halt. Thus, if

a configuration is not a halting one, then it is non-halting.

Figure 3 is a diagrammatic representation of the complete criterion for any

machine of n states. This representation treats a Turing machine in a manner

akin to the “black box” principle in computer science: a Turing machine is

seen herein as merely a device for computing outputs (here exits) from given

inputs – a machine whose “internal workings” from this point-of-view are

otherwise irrelevant. The internal workings, which are by no means

irrelevant, are fully given in the description of the internal states of the Turing

machine, which are represented diagrammatically in the flow graph. In the

diagram the symbol  signifies the infinite non-halting LOOP configurations

of the Turing machine.

The solution to any halting problem is straightforward in theory – though in

practice, the computation could be “hard”. If in fact every tree generated by

the method of exits is finite – that is, if in fact all its branches terminate – then

the complete criterion for any Turing machine may be written, and this

expresses everything determinate about the machine, and everything that

could be needed to be known about it. Then: if, and only if, the standard

starting configuration 0 00S = appears somewhere in the tree of halting

configurations does the machine halt for 0 00S = . Only those machines that

have no exits at all never halt; all other machines have halting configurations,

and among these the configuration 0 00S = may sometimes appear, and our

task is merely to determine the complete criterion to find out whether that is

so.

The Complete Criterion

The result of the application of the method of exits to the

machine of figure 2 enables us to write its complete

criterion.

0 1

0 1 1 1

0 1

0 1

0 1

0 10 11 0 1 10 11 0

01 10 11 0

011 10 11 0

011 0 11 0

= =

=

=

=

S S

H H

H

H

H

This records all the possible halting configurations; from

it we may infer all the non-halting configurations. In this

complete criterion, we also occasionally find it helpful to

mark the symbol scanned at the exit (halting

configuration) by putting it into a box; but this is a

presentational device only. If a configuration is not a

halting one, then it is non-halting. The non-halting

configurations for this machine are 01 and 11 .

Figure 3. The Complete Criterion

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

9

3. Solving unsolved five-state hold-outs

According to the papers published by Kellett [2005] and Ross et.al [2006],

after certain standardisations have been performed to ensure duplicate and

mirror machines have been only counted once, there are 7,491,189 Turing

machines with 5-states – an impressively large number of machines. (There

are approximately 7.6 billion 6-state machines.) After running certain

screening procedures executed by algorithms run on powerful computers,

Kellett [2005] and Ross et al. [2006] claim to have solved the Halting Problem

for all but 98 Turing machines, which they designate “hold-outs”.

It is a claim here that by the methods established in the preceding section the

Halting Problem for all 98 “hold-outs” is solved, and that in fact all 98 are

non-halting. Some of these problems may be classified as “hard” and require

hours of patient work, but most can be solved by the method of exits in two

stages in approximately 20 to 25 minutes. The most difficult problem

encountered by this author was in fact to verify that the Kellett “champion”

five-state machine did in fact halt for starting standard configuration. This

champion machine computes the productivity of the best five-state machine to

be 11; that is, it halts in standard configuration scanning the left-most of

eleven 1 symbols. If the 98 “hold-outs” are indeed non-halting, this confirms

that the productivity of a five-state machine is 11.

We now proceed to illustrate (a) the method of exits, (b) the iterative

procedure used to establish the general solution to the Halting problem for

machines of any size whatsoever, through a series of annotated examples.

Example 1

Holdout machine no. 60 (also designated Kellett [2005] B.9).

It is straightforward to demonstrate that no. 60 does not halt for standard

configuration. It has only one exit at 4X , where it halts on a 0. A backward

trace by the method of exits constructs a tree with minimal depth.

Productivity

Let T be a Turing machine of n states using only the

symbols 0 and 1. Initially T scans only a blank tape. The

machine T either halts in “standard configuration” - that

is scanning the leftmost of an unbroken string of 1s on it

otherwise blank tape, or it does not. If it does not it may

either not halt at all, or halt scanning some other

configuration. The productivity of T is defined to be:

 
the length of the string that scans if it

halts in standard configuration

0 otherwise

T

p T


 



This is a function defined for each Turing machine.

From this we may derive another function,  p n which

is defined to be the productivity of the most productive n-

state Turing machine.

Caveat emptor

Any solution by hand is subject to human error. The

method of exits involves reversing symbols – reading a

“move left” as a “move right” and vice-versa; marking a

scanned state and a scanned symbol, and so forth. These

reversals are mentally tiring and prone to error. No

fundamental principle is involved should a casual error

arise. Hence, subject to this caveat, the Halting Problem

for all five-state machines is solved, and the productivity

of five-state machines is 11.

Figure 4. Holdout no. 60

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

10

 There is no path backwards from this exit at 4X to the standard configuration.

In fact, this machine loops—is non-halting—for almost every tape

configuration.

4

4

1

3 4

1

3 4

2 1

4 3

LOOP LOOP

Exit at

0

00

01 001

0010

0011 00101

001 1 001010

00101 0 001011

0 :1

1 :

0 :1

1 :

1 :

R

R

R

X

The solution to this problem is direct. There is no need to use an iterative

method to break the machine down into a simpler machine of four-states to

which an additional state is added. The method of exits establishes

immediately that there are in fact only three non-halting inputs whatsoever.

There are approximately 7.5 million five-state Turing machines (after

redundancies have been discounted). By running certain algorithms on these

7.5 million Turing machines, Kellett [2005] reduced the number of “hold-

outs” to a mere 98 – a remarkable result. The fewer the halting

configurations, the more likely the given machine is to exhibit apparently un-

analysable behaviour. It is difficult to identify non-halting behaviour merely

from the trace of a Turing machine. Having generated the trace through a

substantial number of steps Kellett concluded that no. 60 is a holdout.

In the literature, a procedure akin to the method of exists is called

backtracking and many of those machines classified as non-halting have been

done so by application of a backtracking algorithm run on a computer. On

considering the formulation of backtracking in Kellett’s paper, we observe

that the same notation for tape configurations that has been independently

developed here is also utilised. For instance, considering a specific case,

Kellett traces halting behaviour back to a configuration 311 - exactly our own

notation. But from this situation (a) Kellett’s algorithm only explicitly checks

the combination 31 and hence does not use all the information available,

namely the whole configuration; (b) the tree structure generated by method of

exits is not identified. The discussion of backtracking offered by Kellett is

instructive.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

11

 (1) It is an error to assume that the backtracking algorithm implemented on

one machine could not solve the halting problem for a class of other finite

machines, as stated in the quotation from Machlin & Stout referenced in

Kellett [2005]. A backtracking algorithm implemented on a finite machine

albeit “large”, could solve the problem for a machine with a smaller number of

states. Therefore, no contradiction is implied in principle.

(2) It is true that the algorithm may “infinitely backtrack” however, it is not

true that the non-halting behaviour cannot be identified as a consequence. The

algorithm infinitely backtracks because it enters a LOOP configuration – one

that can be identified from the method of exits, as shall be illustrated below.

The information contained in the loop is finite, and may be expressed as such

by finite symbols. Any repeated sequence is determined by the machine itself.

Hence, by the introduction of the over-bar and double over-bar symbols as

well as the concept of a LOOP, the method of exits does generate a finite tree

with branches that terminate. All the non-halting configurations of a finite

machine may in principle be identified by the method of exits, and its halting

problem resolved.

(3) An error lies in the understanding of the nature of the impossibility proof

for the halting problem. It does not prove that any given halting problem is

unsolvable, only that if machine A solves the problem for machine B, then

machine B has more states (is “larger”) than machine A. Furthermore, it says

nothing directly whatsoever about human reasoning. It shows that any

algorithm must be implemented on a machine with actually infinite states –

which, as already remarked – means that it is not a machine. The limitation

imposed by the fact that all machines have finite states has been overlooked.

(4) Any limitation on solving the halting problem for a given Turing machine

of n states is practical, not theoretical. That is, in principle, the problem can

be solved, but in practice the solution may require more time than the history

of the universe will allow. But this is not a situation unique to the halting

problem – it is the same situation that applies to all algorithms whatsoever –

that there will be a number that is too big for either a computer or the human

mind to manage. In other words, this situation arises from the nature of

infinity, and is nothing unique to the halting problem. This is another

underlying conceptual error in the history of this problem.

Back tracking formalization

Now that we have seen how the backtracking algorithm

works in practice, we can define the concrete algorithm

implemented in our program. This algorithm ... is

adapted from that put forth by Machlin & Stout (1990)

and as they so gracefully put it: “While backtracking can

be useful, it cannot be guaranteed to always stop since

otherwise it would supply a solution to the halting

problem.” Intuitively, therefore, some non-halting

Turing machines cannot be proven as such by this

procedure. Attempts to apply this procedure to these

machines causes the algorithm to “infinitely backtrack.”

As a result of this problem, we are forced to specify a

step limit pertaining to how far the procedure is allowed

to “backtrack”. If this limit is reached, the results are

also inconclusive.

Kellett [2005], Section 4.2.1.2 page 53.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

12

 Example 2

Holdout machine no. 54 (also designated Kellett A.79). The solution to this

machine is given in Appendix 4.

This example illustrates a slightly more demanding situation; we solve the

problem in two stages, by first constructing a four-state machine by removing

one of the states, and then adding that state back. This example thus illustrates

the iterative method for solving halting problems. Additionally, the loops in

the program lead to loop configurations, and we illustrate how we deal with

those. The loop configuration is identified and then represented as finite

information by use of the over-bar notation. This example introduces the

basic manner in which steps of the program through the loop structure

represented by the over-bar symbol are dealt with. The program steps through

a loop structure as if it were a single instance – the whole point being that in a

loop the same process always recurs.

However, when using the methods of exits – which is a backward trace – a

very important caveat applies – the backward trace generates a branching tree

structure – so it is important to consider the situation where the juxtaposition

of two repeat units of the loop structure creates a new permutation from which

the program can exit. Thus, branches may be hidden within a loop.

It is vital to consider whether a loop could contain a potentially infinite

number of permutations from which the program might exit while applying

the method of exits. This is the sole way in which theoretically the method of

exits could develop that situation assumed in the remark quoted above from

Machlin & Stout [1990] of backtracking never ending. (“While backtracking

can be useful, it cannot be guaranteed to always stop since otherwise it would

supply a solution to the halting problem.”) It is essential to the proof that

backtracking always generates a finite tree with branches that terminate in

LOOP, END or CONTRADICTION. We demonstrate that the tree is always

finite when we prove the Complete Criterion Theorem in Section 5.

Figure 5. Holdout no. 54

Rendering loop configurations finite

The same process always recurs within a loop. This is

illustrated by the following trace for holdout no. 54 used

to verify one of the halting configurations for the four-

state sub-machine.

4 0 3 4

0 3 4 1

011011 01101 1 0110 11 0111 11

011 111 01 1111 00 1111 0 01111

One will see in the above trace that the shifts through

states 3 to 4 to 0 in the loop recur for as long as the loop

recurs; hence, we don’t have to write out a potentially

infinite sequence of such states – a single instance under

the over-bar will suffice.

Hidden permutations

Suppose we have the LOOP structure represented by

11

100

  
 
  

. Recall that this symbol represents the finite

permutation of any repeated sequence of either structure.

One instance of this structure is 11 11 100 11 100 100 .

Here the repeat units have been spaced apart for clarity

only. Now suppose in the complete criterion we have an

input such as: 1 1 20 10, 11 0S H= = . What this says is

that if the tape configuration is ever 211 0 then that may

have been reached from an input of 1 10 10S = . In our

example there are two instances of the permutation 110:

11 11 10 0 11 10 0 100 . If the program is in state 2

such that 211 0 at one or both of these instances, then a

backward trace to 1 10 10S = becomes mandatory in the

method of exits. Thus, the application of the method of

exits can be demanding of patience.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

13

 Example 3

Holdout machine no. 20 (also designated Kellett [2005] B.4). The solution to

this problem is given in Appendix 4.

While we found most of the 98 hold-outs to yield solutions readily to the

method of exits, no. 20 may be regarded as a difficult problem. However,

there is an immediate direct proof that it is non-halting and we give that first.

Then the solution is broken down into three stages: we construct firstly a

three-state machine, 3T , then a four-state machine 4T , then finally the five

state machine, 5 no. 20T  . The difficulty of the problem is illustrated by the

introductory remark we make to the solution: there are four inputs to state 1Q ,

so direct solution of this machine, though possible, would lead to a tree with

very many branches. A large number of non-halting configurations are

introduced by the loop of period 1 given by the instruction 1 : L at 3Q . The

effect of this instruction is to permute tape-configurations, and we call it a

permutator. This will be explained in section 4. There are also loops of

periods of 2, 3 and 4 states; there are double cycles between states 0Q and 1Q

and between 1Q and 2Q . The writing of the complete criterion for this

machine is a difficult problem. This is because the width of the tree, though

finite, is very wide.

We write the complete criterion for 3T and then apply the method of exits to

4T to obtain its tree. At that point a simple argument confirms the earlier

conclusion that 5 no. 20T  is non-halting. In the solution we omit the

complete criteria of both 4T and 5T .

The method of writing complete criteria shall be firmly established, and the

finite nature of the tree for no. 20 is also implied. Since it is demonstrably

non-halting we omit the tedious task of writing out all the halting

configurations for 4T from its tree; and then generating the tree for 5T .

Actually, there is no inherent interest or purpose served by doing so. The

individual halting problems have no practical or even theoretical application.

The whole import of the topic – its significance cannot be underestimated –

lies solely in the question: can the Halting Problem be solved or not?

Figure 6. Holdout no. 20.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

14

 Example 4

Kellett [2005] B5 Champion. Discussion of this machine is given in

Appendix 5.

The B5 Champion is a machine that computes a well defined productivity of

11. If all other 98 hold-outs are non-halting this demonstrates that the greatest

productivity of any five-state machine is 11. That is, starting in standard

configuration in state 0Q the machine ends scanning the rightmost of a block

of eleven 1s.

It is just as essential to the proof in this paper that those machines that halt for

standard configuration should also be demonstrated. In the method of exits,

we must prove that the tree is finite – that is, have finite depth and width –

branches that terminate after a finite number of steps, and a finite number of

branches. This is proven in section 5, when we prove the Complete Criterion

Theorem. In our preliminary discussion the B5 Champion we write the

complete criterion for a T4 sub-machine, and demonstrate that the starting

standard configuration appears on a finite branch of the tree generated by the

method of exits. The tree of halting configurations has enormous width as we

shall subsequently explain, and to write it by hand is a practical task of no

interest.

But this example does raise the possibility that (a) some among these branches

are non-terminating, being potentially infinite in length, and/or (b) at some

point in the generation of the tree structure a non-finite (potentially infinite)

number of branches is generated. In either case, the tree would then become

infinite, and the method of exits would fail to terminate. Then, the tree for

such a machine could not be written, and its halting problem would not be

solvable. Therefore, proving that the tree is always finite is essential. In the

proof of the Complete Criterion Theorem, which is based on the method of

inputs, we must prove that the permutations that are needed as inputs are

finite.

One understands that finding the finite tree of this particular B5 Champion

machine would not prove the result for all machines.

Figure 7. B5 Champion

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

15

4. Permutators, loops and the method of inputs

We begin by illustrating the problem introduced at the conclusion of the

previous section by further investigation of the case of the B5 champion. At

several occasions in the generation of the tree by the method of exits, we

encounter the following situation. The machine has entered state
3Q scanning

a 0 to the right of which there is an indeterminate block of 1s. Because of the

1:L instruction for
3Q the program might have entered that state from any one

of those 1s. This is shown in the trace of the tree for the B5 Champion as

follows.

3

3 3 3 3 3

0 11111110

0 11111110 01 1111110 011 111110 ... 0111111 10 01111111 0

Since the block represented by the over-bar symbol 111 is a block of three 1s

repeated finitely and indeterminately, has not the width of the tree become

potentially infinite at this point? This is the consideration we must eliminate,

if our Complete Criterion Theorem is to go through. We also have to show

that the length of every one of those branches is finite. To solve the problem

about the width of the tree, we must show that the number of permutations

that need to be considered at any stage of the generation of the tree is finite.

During the execution of its program a Turing machine may enter loops and

cycles of instructions, but these loops and cycles always represent finite

alterations to the tape configuration, and hence only finite permutations of

configurations need to be tested. The testing is done by the method of inputs –

input of all possible permutations of symbols of length sufficient to cover all

possible alterations to the tape by the loop or cycle.

The over-bar notation is a means of dealing with the LOOP structures

identified during execution of the method of exits. The possibility of this

approach arises because in fact the width of the tape configuration – the

number of 1s and 0s in any permutation – is circumscribed by what shall be

defined below as the period of the machine given by the method of inputs.

Figure 8. The B5 Champion

111 111 111 111 111 ...=

Reducing potentially infinite to finite

When in a program we reach a line such as:

3 30 11111110 0 11111110= note firstly that this has

already determined something about the halting

configuration – namely, that it comprises at least four 1s

marked off by one 0 at each end. (The minimal instance

of this configuration is
30 11110 . To deal with the over-

bar, we would now proceed to the following tape

configurations.

3 3 3

3 3 3

3 3 3

3

01 1111110 01111 1111110 011111 1110

011 111110 011111 111110 0111111 110

0111 11110 0111111 11110 1111111 10

011111111 0

This table of 10 configurations covers all the possible

ways in which the configuration 30 11111110 might have

been reached. Hence, we illustrate that at this stage the

width of the tree really is finite.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

16

 Loops and cycles

To illustrate what is meant by the period of the machine and the method of

inputs, consider a sub-machine of the B5 Champion.

In figure 9, the sub-machine in question is the loop marked in red. This is a

loop of three states each connected by the instruction 1 : R . A machine will

only move through this loop more than once if the tape configuration requires

it to do so. For instance, to exit at state
1Q the input configuration is

4

2

1

1

1 1 1110

111







. The shift number of a loop is the number of separate states in the

loop. The sub-machine will always exit somewhere if there is a 0 on the tape

to the right of any scanned symbol. The period is the number of squares on

the tape required to be read when the machine passes once through the loop.

The step number is the number of steps the program runs through when

executed. The step number is greater than the shift-number when the same

state is invoked repeatedly during execution: in this example, when at state

3Q we have the 1: L instruction.

We will define an n-cycle to be a concatenation of n loops. Thus, a loop is a

1-cycle. See figure 10 for an instance of a 2-cycle in the B5 Champion.

The method of inputs

The method of inputs is to input test data at each input equal to every

permutation of the period of a loop or n-cycle. Thus, in the above example, if

every permutation of three symbols fed into the red-loop at each input will

suffice to characterise all the outputs of that loop. From this the complete

criterion for the red-loop can be written. At this point the over-bar notation is

reintroduced to represent the possibility of repeated instances of a tape

configuration corresponding to the period.

It will be immediately seen that the method of inputs is very “expensive” in

terms of the use of resources. Instead of constructing one tree by the method

of exits, we must work forward through 2
 permutations, where  is period

of the cycle, and do this for n states, where n is the number of states in the

cycle. The number of steps required can grow inordinately, as shall be shown

shortly.

Figure 9. B5 Champion. Red loop.

Period and shift number

In this example the shift number and the period are the

same; if we were to alter one of the 1: R to 1: 0 then the

period would be one less than the shift number, that is, 2.

If we were to replace one 1: R to 1: L then the period

would be just 1.

Figure 10. B5 Champion. Red-green 2-cycle.

Stepping through the cycle

The program can (and does) move through the red loop

followed by the green loop back to the red loop in a cycle

whose shift number is 5 and period is 4 (four R moves).

Inputting permutations

To write the complete criterion of the 2-cycle defined by

the red and green loops combined requires input of all

permutations of four symbols at each input, because the

period given by the four R-moves is 4. There are 42

inputs, and since the number of states is 4, then

2 44 2 1024 = traces are required – not, apparently, an

excessive number. The length of each trace is given by

the shift number, which in this case is equal to the step

number; the shift number being 5, this makes

2 45 4 2 5120  = steps.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

17

 Routine of the method of inputs, ghost loops, changing the permutation

Run instances of each permutation starting at each input through the step

number. If the program returns to the same permutation, it is a loop;

otherwise, it is a halting configuration and exits somewhere. Check to see

what the output of the routine is. The over-bar notation is introduced at the

completion of the method of inputs. Until now, we have considered the effect

on the method of inputs of combining two loops into a 2-cycle – the red-green

cycle of the B5 Champion has period 4 and shift number 5. To determine the

complete criterion, we must test at each input (state) each of
42 permutations

to a depth of 5 steps, here equal to the shift number. One thing to observe

about the B5 Champion is that there is a ghost loop between states

4 0 3, and Q Q Q . The reason why this is an illusory loop (a “ghost” loop) is

because at
4Q the instruction is 0 :1 ; hence, if the machine reaches state

0Q

from
4Q then it must already be scanning a 1, and cannot move to state

1Q .

We redraw the flow-diagram to express this observation (figure 11).

Now we must consider the effect of the addition of the loop between states

2Q and
3Q . In figure 11 we have marked this loop in blue. What is the

effect of this blue loop on the tape configuration? We have just seen that the

complete criterion for the red-green cycle combined is fully described by

inputs of every permutation of four symbols. To enter the blue cycle the

program must leave such a permutation having moved right onto a 0 scanned

at state 2. So, the tape looks like the following – in the empty four boxes there

is a permutation of 1s and 0s.

20

On leaving state
2Q the last 0 is converted to a 1 and we enter state

3Q .

31

The instruction 1 : L forces the machine to scan to the left until it finds

another 0, which it then changes to a 1. By doing so the machine changes the

permutation that is being read at state
2Q . The effect of the red-green cycle is

fully described by a permutation of four symbols; the period of the red-green

cycle is 4. The greatest length of the tape that needs to be considered is found

by supposing that the machine in state
3Q steps to the left to find a 0 leftmost

in a new block of four symbols, also to the left of the old block. In this, we

also consider the fact that in the red-green cycle there are only moves to the

right.

Figure 10. B5 Champion. Red-green 2-cycle.

Loops of the red-green cycle

1

0

1

2

4

2 1 1

1

2

shift tape configuration

0 ... 0011 0 011 0011 ...

1 ... 0011 00 11 0011 ...

2 ... 0011 01 11 0011 ...

3 ... 0011 011 1 0011 ...

4 ... 0011 0111 0011 ...

5 ... 0011 0111 0 011 ... 0 0110 01110

0 ... 1111 1111 1111 ...

1 ... 1111 11

O P

1

L O

11

→

4

1

1 1

1

2

4 4

111 ...

2 ... 1111 111 1 1111 ... does not enter

3 ... 1111 1111 1111 ... the green cycle

1 111 1111

1 ... 1100 1100 1100 ...

2 ... 1100 11 00 1100 ...

3 ... 1100 110 0 1100 ... exit at

LOOP

HALT

X

→

Figure 11. Ghost loop and the red-green-blue cycle

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

18

 Permutators

The investigation of the red-green-blue cycle of the B5 Champion tells us a lot

about the configuration of the tape required to make these changes take place.

Figure 11. B5 Champion. The red-green-blue cycle.

The effect of the permutator

On input of test data 1010101 010 the program halts on

40101 11110 after 9 steps; only the data marked in the

box has been used – the 0101 to the right of those entries

was redundant; the cycle was in fact tested by a period of

just 5, less than the maximum. Suppose we input

something more than the maximum.

1

2

3

3

011111 11100 two 0s separated by eight 1s

0111111110 0

0111111111 0

0 1111111110 two 0s separated by nine 1s

Apparently we have reached a permutation of eleven

symbols – larger than the maximal period of nine

symbols. But this is an illusion. Within this

configuration there is a repeat unit of 111 through which

the red cycle merely loops. It is essential to eliminate

redundant loops.

1

2

3

3

011 11100 eliminate redundant loops

0111110 0

0111111 0

0 1110 eliminate redundant loops

In this example we have in fact reached a permutation of

5 symbols, less than the maximum.

We can only obtain a maximal period if there are two 0s on the tape separated

by seven 1s. Any insertion of the repeat unit 111 into this block does not

change the permutation at the end of the process. Although it would seem that

by line 5 there has been no change in the tape configuration there has: the state

in which the first 1 in a block of four 1s is being scanned has changed from

1Q to 2Q .

The 1: L structure is a PERMUTATOR and its effect here is to create a blue-

red-green cycle of period 9 and shift-number 13. The maximum number of

steps in the execution of the program is 21.

The program steps through repeated instances of a loop as if it stepped

through just one of them. Hence, we use the over-bar notation to remove the

extraneous information and identify the tape-configuration. This is the

essential insight upon which the finite nature of Turing machines is

recognised. Without it, Turing machines appear to enter incomprehensible

infinite configurations from which their halting or non-halting behaviour

cannot be identified. However, this is an illusion.

The maximum period introduced by a permutation is 2 1  where  is the

period of the cycle to which the permutator is joined. A permutator changes

the permutation that is currently being tested. But as all permutations are

tested by the method of inputs systematically, this cannot cause the branch of

a tree not to terminate.

The question is – what is the length of the permutation that we must now test

in order to ensure that we have found every halting configuration, and thereby

also every non-halting configuration?

1 2 4 1 2

2

3

3

old permutation

1 0 1 1 1 1 1 1 1 0 red-green cycle has only right moves and period 4

2 0 1 1 1 1 1 1 1 0 exit from red-green cycle

3 0 1 1 1 1 1 1 1 1

4 0 1 1 1 1 1 1 1 1 steps left to enter a new permutation of red-green cyc



2

le

5 1 1 1 1 1 1 1 1 1 red-gren cycle has only right moves and period 4

new permutation


MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

19

 To test the blue-red-green cycle, by the above argument, the maximum length

is 9. To start in standard configuration at
0Q and assuming an exit at

4Q we

require two shifts
0 4 2Q Q Q→ → , but as one of these is 0 :1

its period is

increased by just 1. To exit at
2 4 0Q Q X→ → is also two shifts and adds 1 to

the period. The maximum length of the permutation to be tested is 11. The

maximum step number is 23. This is consistent with the known result for the

input of standard configuration – eleven 0s are changed to eleven 1s and the

machine halts scanning the leftmost of these in state
0Q having left

4Q . The

machine could exit via state
1Q , an addition of three shifts, adding 2 to the

period, making a maximum length of the permutation to be tested as 12. The

step number is 24. So, to write the complete criterion of this machine, we

must input all tape configurations comprising
122 permutations of twelve

symbols (1s or 0s); to these we must add the state symbol of the initially

scanned state; one state symbol may be inserted at any one of 12 places; and

there are 5 such states. Thus we must test 125 12 2 245760  = inputs in all.

Now the question becomes – for how many steps do we need to run each input

through the machine? Since the blue loop is a permutator, it has the effect of

starting with one input configuration at
2Q and replacing it by another, and in

a sense before we have finished with the first configuration – so, we are

starting the test all over again. But if this process continues then it can do so

only finitely. In the course of the algorithm, one of the 125 12 2 

configurations at
2Q is reached immediately, and others subsequently.

Therefore, if we run the program long enough we may be sure that either (a)

the machine will halt for the given starting input, or (b) an exact replica of an

input configuration will be reached, in which case that starting configuration

and all others generated by that input are non-halting. Hence, to be sure that

we find every halting and non-halting configuration for this Turing machine,

we must run each of the 125 12 2  tape configurations through 125 12 2 

steps. For the complete test a total of ()
2

125 12 2  steps, approximately 60

billion. But this is the upper limit – since each configuration is tested

repeatedly in this process, the number of steps required in practice is much

less. The lower bound for the entire test is provided by the number of tape

configurations we need to test, which is 125 12 2  . We observe, for instance,

that the configuration
1010101 010 halts after 9 steps in the red-green-blue

cycle, so much less than 125 12 2  steps.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

20

5. Proof of the Complete Criterion Theorem

Before we proceed to that proof, we shall consider a final objection to its

possibility. The insight upon which the whole resolution of the Halting

Problem is based is that in a Turing machine of finite states (it could not have

actually infinite states) whatever happens is thoroughly determinate and finite.

It is simply the plethora of combinatorial possibilities that has mesmerised us

into not abiding by this intuition: it is finite, therefore, the solution is also

finite.

The only way in which a machine could become indeterminate and non-finite

in its behaviour would be if it were “irrational” – for example, it randomly

generated numbers (in binary) in some wholly unpredictable way. Therefore,

the objection runs: what could be easier? We have algorithms that generate

irrational numbers. For example, we have many algorithms for the generation

of . One of these is
1 1 1 1

1 ...
4 3 5 7 9


      . As is well-known  has a

decimal expansion in which no discernible pattern in the sequence of digits

can be found; it is effectively a random number generator. So, let us make a

Turing machine that churns out the decimal expansion (in binary) of  , and

that will clearly have entered into an infinite non-halting loop, for which there

is no discerning its halting or non-halting behaviour if that machine should we

not already know what it was designed for.

In reply: (1) the Turing machine that could generate any respectable stages of

the algorithm indicated by
1 1 1 1

1 ...
4 3 5 7 9


      would be a very large

Turing machine. We have stumbled in our analysis over the complexity of

occasional instances of Turing machines with merely five states. According to

the literature, there are approximately 760 million Turing machines with six

states. (See Kellett [2005].) In other words, the halting problem for any

machine that could implement the above algorithm to any interesting degree

would be practically vast; but not theoretically so. It is one thing to know that

the halting problem can be solved for a machine of arbitrary n states, and

another thing to actually compute its complete criterion and thereby solve that

problem. In summary the distinction between knowing and computing has

constantly been overlooked in this matter.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

21

 (2) It is not true that there is any machine that can compute  . Surprising

though this statement may seem, every machine is finite, so all the most

powerful computer in the whole wide world can do in this matter is compute a

finite approximation to  . Being finite, the computation is that of a finite

(rational) number. As such it will be represented by a (very long) binary

sequence that will constitute the output for a Turing machine started in

standard configuration. Such a machine will halt. If there are n symbols in

the binary representation of that number, then one can well boggle at the vast

size of the number of steps needed to confirm that such a machine really does

halt. We have just seen an example of a five-state machine that may require

as many as 10 billion steps to achieve this.

Always in this topic the actually finite nature of any Turing machine is

forgotten. It is true that from the theoretical point-of-view the Turing machine

in general is potentially infinite. This means that given any Turing machine of

n states it is possible to build another Turing machine of 1n+ states. But

even this is a theoretical possibility belonging more to the domain of (abstract)

number theory than to practical life, for we cannot build a machine that will

exhaust all the matter of the universe. Therefore, to acknowledge that Turing

machines are in theory potentially infinite is not to say that there ever has been

a Turing machine that was not actually finite; the actually infinite Turing

machine is also a creation of pure fantasy on the one hand, or legitimate

theoretical speculation on the other – but to confuse the two is surely wrong.

Equivalence of the method of exits and the method of inputs

Once the theorem is proven it follows as a corollary that the method of inputs

and the method of exits are equivalent. As they both write the complete

criterion, then they must be equivalent, for there is only one complete

criterion, subject to equivalences of notation.

In the language of set theory, a complete criterion is a set of equivalence

classes of symbols. This makes any complete criterion into a second-order

object in either set theory or logic. Since it is not first-order it unlikely that it

is computable. And yet, the human mind can write it. There is no reason to

presume a priori that computability and human reason are equivalent.

Computing Pi

The day on which this monograph was completed we

have the following announcement.

The value of the number pi has been calculated to a new

world record length of 31 trillion digits, far past the

previous record of 22 trillion. Emma Haruka Iwao, a

Google employee from Japan, found the new digits with

the help of the company's cloud computing service. …

The calculation required 170TB of data (for comparison,

200,000 music tracks take up 1TB) and took 25 virtual

machines 121 days to complete.

www.bbc.com/news/technology-47524760

The 31 million digits calculated makes up a finite and

rational number. Infinity cannot be beaten.

The Halting Problem for the machine Ms. Iwao

employed in this calculation would be vast beyond

imagination, yet still finite. In theory, its complete

criterion could be written; in practice, it could require

more resources than the universe could provide.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

22

 Proof by mathematical induction

Recall that a complete criterion for an n-state machine is a specification of

those tape configurations for any inputs to the machine that cause that

machine to halt, specifying the exit at which it halts, and giving completely

the tape configuration at any given exit. The Complete Criterion Theorem

states that for any finite Turing machine of n states, it is possible to write a

complete criterion.

We now proceed to the proof of the Complete Criterion Theorem. In the

proof, we refer at times to the method of exits, but the proof proceeds by

mathematical induction on the method of inputs. Clearly, a complete

criterion can be written for all 1-state Turing machines. In the induction step

we assume that we have a complete criterion for a machine of k states. The

task is to show that granted this assumption a complete criterion may be

written for a machine of 1k + states. We start with a Turing machine
kT of k

states and assume that it has a complete criterion. We add a further state,

designated
1kQ +

, and argue that a complete criterion for the resultant
1kT +

machine can be written. The inductive step takes the form represented by

figure 12.

To prove the induction step, we exhaust all the cases, demonstrating in each

case that if the complete criterion for
kT is given, then the number of

permutations needed for the method of inputs is finite. This also entails that in

the method of exits the tree for
1kT +
 is finite.

It may happen that a given machine T comprises two sub-machines between

which there is a ghost connection. Suppose we have two machines M and N,

and an edge in the flow-diagram from an exit in M to an input at N. Now

suppose that in fact M never reaches this exit for any input configuration, so

that there never is an input to N from M. Then T comprises two separate

machines between which there is only a ghost or redundant connection that

may be deleted. Hence, without loss of generality we assume in the induction

hypothesis that
kT is a k-state machine in which there are no ghost

connections. Since there are no ghost connections, each state of the machine

can be reached from every other state by input of at least one tape

configuration. This entails that there are no isolated loops within the machine,

and that
kT has a maximal cycle with period  and shift number  .

Figure 12. The Inductive Step

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

23

 (1) There may be any number of inputs from the exits of kT to state 1kQ  .

These inputs to 1kQ  are represented in the graph of 1kT  by at most a finite

number of edges (figure 14). In the method of exits a tree is generated: every

new edge in the graph joining kT to 1kQ  produces in that tree the possibility

of a new branch. As some of these branches may result in tape contradictions,

the number produced will be less than or equal to the number of inputs (edges)

from kT to 1kQ  . If the maximal cycle kT has period  , then in the method

of inputs, the maximal permutation that needs be tested is 1  . In the

method of exits, the tree for 1kT  is finite.

(2) There are at most two outputs from the state 1kQ  corresponding to the

instructions for 1kQ  for the symbols 0 and 1 (figure 15). Any symbol for

which the instruction at 1kQ  is not given will define a halting exit from the

machine 1kT  . Such an exit will introduce no loop. As per the preceding

paragraph, since there will be an input to 1kQ  from kT it will increase the

shift number by 1, the period by at most 1 and the number of steps of the

machine to reach it by 1. If both 0 and 1 lead to the exit 1kX the same

conclusion follows. The tree for 1kT  is finite.

(3) There may be at most two inputs (edges) leading from 1kQ  to the

machine kT (figure 16). Each introduces a loop to the machine. We begin

with the addition of one loop. By the induction hypothesis kT is a single

machine with no ghost connections and a maximal cycle of period  and shift

number  . An input from 1kQ  to kT must join this cycle. It may join and

exit at the same state, or it may join and exit at different states. If it joins at

the same state (figure 17), then the new maximal cycle formed by the addition

of 1kQ  has maximum period 2 and maximal shift number 2  . If it

joins at a different state (figure 18) then the new cycle starts at the exit X but

follows the old cycle in kT once (red in the above diagram), before leaving

that cycle at X then passing through 1kQ  it returns to the old cycle at least one

shift down from X and follows the cycle (blue) until it reaches X again. So the

new cycle has maximum period 2 1  and maximum shift number 2 1  .

At most a cycle of maximum period 2 1  is added. In the method of inputs

the length of the permutation that must be considered is also increased by a

maximum of 2 1  , a finite number. The tree for 1kT  is finite. The addition

of a second loop is just an iteration of the preceding case.

Figure 14. Case 1. Exits from kT to 1 .kQ 

Figure 15. Case 2. Exit from 1 .kQ 

Figure 16. Case 3. Inputs from 1kQ  to .kT

Figure 17. Loop from 1kQ 
exits and joins from the

same state in .kT

Figure 18. Loop from 1kQ 
exits and joins from

different states in .kT

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

24

(4) Suppose that a loop is introduced into state 1kQ + . Furthermore, suppose

that this loop constitutes a symbol change (figure 19). The only possibilities

are 0 :1and 1: 0 ; the analysis for each is the same. The symbol change

introduces the possibility of a tape contradiction, so that in the method of exits

the tree for machine
1kT +
 may terminate at

1kQ +
. However, assuming that the

instruction is consistent for some tape configurations, then the instruction

reduces the potential number of loops introduced by
1kQ +

 to just one; this

does not affect the analysis of the preceding paragraph, save to make the

increase in shift-number 3 and the increase in period at most 2. So the new

cycle has maximum period 2 1 + and maximum shift number  +2 2 . In the

method of inputs the length of the permutation that must be considered is

increased by a maximum of 2 1 + , a finite number. The tree for
1kT +
 is finite.

(5) Now suppose that the loop is a 0: , 1: , 0 : or 1:L L R R

instruction (figure

19). If two such loops are added at
1kQ +

 then it is immediate that the

machine enters an infinite loop if, and only if, it reaches
1kQ +

. Therefore, we

consider the case where there is one such loop structure, and the other exit

from
1kQ +

 is an input at
kT . Such a loop is a permutator. That is, it has the

effect of changing the loop configuration at the input
iS from one

permutation to another. Let the maximal cycle in
kT have period  and shift

number  . To deal with the case of the permutator we argue in two steps.

Step 1. Convert the permutator temporarily to an exit (figure 20). This means

that the machine exits at
1kQ +

 scanning a symbol    0,1 and returns to the

cycle on the complement,   . This creates a temporary machine 1kT +
 of + 1k

states. By the induction hypothesis we have the complete criterion for
kT .

By the argument of section (3) we have a new maximal cycle. Then by the

preceding analysis the new maximal period arising from the adjoining of the

loop to the cycle
1kT +

 is   = +2 1 and the new maximal shift number is

  = +2 1 . That is the maximal cycle in 1kT +
 now has parameters   , .

By the method of inputs or the method of exits write the complete criterion for

1kT +
 . This identifies both the halting and non-halting configurations of 1kT +

 .

Figure 19.

Loop at
1kQ +

 with a symbol change.

Figure 19.

Loop at
1kQ +

 with a permutator.

Figure 20.

Temporarily replacing the permutator by an exit.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

25

 Step 2. Replace the temporary exit by a permutator (figures 21, 22). This

generates the full 1kT  machine. In this analysis we are treating 1kT  as a cycle

that includes 1kQ  with parameters   , . But in order to enter the

permutator loop we must regard the program as having left that cycle because

it is scanning the alternate symbol at 1kQ  ; the other symbol would cause it to

remain within the cycle. We can show this move by adding a dummy state to

the diagram (figure 23). The effect of the permutator is to switch from one

tape configuration to another. The permutator may progressively introduce

redundant blocks into the tape configuration (figure 24 below).

Figure 24. The permutator may introduce redundant blocks into the tape.

From the above the cycle with the permutator has maximal period

         2 1 2 2 1 1 4 3 , and similarly with the shift number. To

prove that the method of inputs is finite introduce a test configuration of

length  2 1 on an otherwise blank tape. Run the machine forward; either:

A. The machine does not exit the cycle (does not reach the

permutator), or

B. It does exit the cycle at the permutator.

In the case of A, then since we have the complete criterion for 1kT  this

configuration belongs to those that do not exit at 1kX  and this is added to the

complete criterion for the full machine 1kT  . It will either exit and halt

elsewhere or represent a non-halting configuration, one that has already been

identified.

Figure 21.

Replacing the temporary exit by a permutator.

This diagram in this figure represents a program that in

the flow diagram would appear as in figure 22 below.

Figure 22. A permutator in a flow graph.

Figure 23.

Representation of a permutator by means of a dummy

state.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

26

 In the case of B. The induction hypothesis is that we have the complete

criterion for
kT from which we obtain that for

1kT +
 . Therefore, we know

everything about the halting and non-halting behaviour of the blocks

represented in the above diagram with period  . Examine the tape and

identify if the permutator has immediately entered the permutator LOOP.

This will occur, for instance if the permutator is 0 : L and the scanned symbol

is a 0 to the left of which is a completely blank tape. If the program does not

enter this LOOP then it is because the alternative symbol (here a 1) is

somewhere to the left of the scanned square of the tape. (Since the input date

was placed on an otherwise blank tape, the whole tape is determined, and it is

known whether this symbol is on the tape or not.) Run the program forward to

where it leaves the permutator; this occurs when the symbol changes. (In our

example from a 1 to a 0.) Examine the tape. Replace all instances of a LOOP

configuration from the criterion for the 1kT +
 machine with a single instance,

and mark this by an over-bar. The over-bar is needed to identify any LOOP.

This step is essential in order to identify the LOOP structures. By means of

the over-bar we reduce the information in a potentially infinite repetition of

the same configuration to a finite expression. The aim is to ensure that at each

stage a new configuration of  +2 1 symbols is examined in the cycle. This

will create a new permutation of  +2 1 symbols without redundant LOOP

configurations from the maximal cycle of the
1kT +
 machine.

The effect of the permutator on the cycle
1kT +
 is completely described by the

procedure of testing two instances of tape configurations run in the cycle side-

by-side. Denote any instance of the configuration of the cycle (of length 

by  . Let two of these instances be
1 and

2 , and let there be between them

the symbol that causes the program to engage the permutator, , at
1kQ +

. For

brevity we will denote this also by  , though in practice it might be its

complement   if the program enters the permutator on the change of symbol

instruction, :  . So the entire test is of the concatenation
1 2    ,

where  denotes concatenation (joining two strings of symbols at one end).

First we test
1 to see whether it leaves the cycle at the permutator. If it does

not, then the complete criterion for all configurations
1 2    that begin

with that
1 configuration are governed by the complete criterion for

1 for

the machine
1kT +
 . For those configurations that exit at the permutator, we test

the second instance
2 from the state,

1kQ +
, where it re-enters the cycle.

Effect of the permuatator

Instead of testing a single instance of the tape

configuration of the maximal cycle,  , we test two

instances jointly. Concatenating these with the

permutator  we test the string

1 2   

This gives us a sequence of inputs tested.

1 2 3...  → →

Eventually every permutation of the tape configuration of

the maximal cycle is tested and classified as either

halting or non-halting.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

27

 If the program exits at the permutator when
1 is being tested then we have

not completed the test of
1 before identifying its halting or non-halting

behaviour. The same will apply to
2 if it too exits. The process is itself an

iterative process. As we move around the cycle, we are testing equivalence

classes of instances of the cycle configuration so each shift within the cycle

eventually classifies one configuration and multiple instances of  are being

tested together. When the test re-enters the cycle, all we have done is shift to

another instance of  which we then proceed to test. The change of

permutation makes no difference. We get an iterative sequence of tests:

1 2 3...  → → Provided we guarantee that each instance of  is

included in the test of inputs, this test must terminate. We must ensure: (1)

that every instance of the form
1 2    is an input. (2) Redundant

configurations which are repeat instances of tape configurations belonging to

the cycle (its non-halting configurations) are removed. In the test of

1 2    we guarantee that neither
1 nor

2 are instances of the LOOP

of the cycle. The instances of the LOOP in the cycle are non-halting

configurations recognised and classified from the already constructed

complete criterion for the cycle of
1kT +
 . (3) The final thing we need to do is

require that any given test is run through a sufficient number of steps to ensure

that all instances of
1 2    encountered in that equivalence class are

classified as either halting or non-halting. (4) We can only eliminate

redundant configurations when inside the cycle of
1kT +
 . Only then are they

redundant. If we eliminate them during the permutator stage, some

permutation may be omitted and the test becomes unsound.

The length of the permutation that must be investigated in the method of

inputs is increased from  to a maximum of  +2 1 . Furthermore, since the

permutator switches the input from one permutation to another, it is as if we

had abandoned the test of one permutation before it was finished and started to

test another one afresh. This is not a situation that can continue indefinitely

(ad infinitum) because there are only a finite number of permutations of tape

configurations that need to be tested. Furthermore, what we are now testing is

not the configuration of period (length)  , but the configuration of length

 +2 1 . So, as the test proceeds we eventually reach either an exit (halt) or

there will be a replication of a tape configuration by means of which we will

identify a LOOP. As there are 1+k states in the
1kT +

there are

()()  ++ + 2 11 2 1 2k configurations to be tested.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

28

There are ()+2 1

2 permutations of a tape of length  +2 1 ; the starting state

symbol may be inserted at  +2 1 places to make () ()


+
 +

2 1
2 1 2 tape

configurations of one state; there are + 1k states; hence the number of tape

configurations in all is () () ()


+
+ +

2 1
1 2 1 2k . As the permutation can be

switched by the permutator by no more than this number of times, we can be

sure to reach either an EXIT and halt or a LOOP within () () ()


+
+ +

2 1
1 2 1 2k

steps. The number of permutations in the method of inputs is finite. Though

this may be a large number, the tree generated by the method of exits for
1kT +

is also finite. (In most cases it will be a much more efficient method of

identifying the complete criterion.)

The great practical difficulty of the method of inputs is the vast size of the

sample space, which may mean that in practice a complete test cannot be

conducted, simply owning not to any theoretical constraint but to practical

limitations – time, patience, man-hours, human error, computing power and so

forth. But mathematical induction is a theoretical tool that establishes

knowledge not necessarily practical tests. Therefore, it is no limitation upon

mathematical induction that in the case of Turing machines we hit the buffers

of practical limitations relatively early on; we encounter exactly the same

situation with every instance of a result established by mathematical

induction.

While the method of exits is much more efficient than the method of inputs, it

too has a practical (not theoretical) limitation that can make it very difficult to

implement – this practical limitation occurs when the branching of the tree

generated by the method of inputs becomes very large – the tree becomes very

wide, though it remains finite.

Conclusion

Hence the induction step holds: in all cases, either by the method of inputs or

by the method of exits the complete criterion for
1kT +
 may be written. Hence,

by mathematical induction, for all Turing machines of n states, the complete

criterion may be written.

Corollary

The Halting Problem may be solved for any Turing machine.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

29

 The B5 Champion again

The B5 Champion is an example of a machine for which the problem of

writing the complete criterion by either the method of inputs or the method of

exits is very large. By the method of exits the tree generated becomes very

wide. The method of inputs is avowedly very expensive in resources and we

have already indicated that   =125 12 2 245760 inputs must be tested, and a

upper bound of 60 billion steps calculated. The underlying problem is that the

length of the tape configuration being tested (the period of the whole cycle) is

already 12; secondly, that almost all tape configurations are non-halting –

which accounts for the extensive branching of the tree. However, we illustrate

the process of the method of inputs described for the permutator. This is

given in Appendix 5.

1. 000100 1110010100

 Halts in 29 steps, 23 tape configurations are classified

2. 00100 110000000

 Halts in 103 steps, 66 tape configurations are classified

3. 000000 000000000

 Halts in 47 steps, 47 tape configurations are classified.

4. 20 1 1100

 A non-halting LOOP of the B5 champion.

The last example is an instance of a non-halting configuration that does enter

the permutator. Note in this last example the presence of the final 0; the

configuration 21 11 is an instance of the non-halting loop of the cycle without

the permutator. We see also the use of the over-bar notation. This notation is

essential to (a) eliminating the redundant configurations, (b) recognising the

essential replica nature of non-halting configurations. At each pass through

the permutator the program increases the number of instances of the repeat

unit by 1, but the notation eliminates this information under the category of

“finite but indeterminate” and the non-halting behaviour of 20 1 1100 is

recognised.

A non-halting loop of the B5 champion

0 2

2

4 1 2

3

3

2

4 1 2 4 1 0

1

2

3

3

3

3

2

test input: 0 1 1100

0 1 1100 new permutation

0 11 1 0 0 exit cycle

0 111 1 0

00 11110

01 11110 new permutation

011 11 1 0 0 0

01111101 0

011111010 0 exit cycle

011111011 0

0111110 110

0111111 110

00 111111110

01 111111

S =

2

110

01 1100 eliminate redundant cycles

LOOP

It is a conjecture that this is the only additional non-

halting LOOP of the B5 Champion – a loop that is not

already a LOOP of the previous cycle. If valid this

conjecture would solve the complete criterion for the B5

Champion.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

30

6. Philosophical and cultural considerations

There is a philosophical and cultural background to the Halting problem

which is the mainspring of its interest. Thesis: all mathematical reasoning

(human or machine) is a species of computation. Antithesis: it is not.

The apparent impossibility of a solution to the Halting Problem

The proof that it is not possible to solve the Halting Problem states merely that

if one machine A solves the halting problem for another machine B, then

machine A has many more states than machine B. From this we may infer that

it is impossible to build a universal machine that would solve the halting

problems of all machines, including its own. This proof does not refer to

human reasoning, so says nothing directly about it. The possibility of

knowing that a halting problem is solvable, yet not being practically able to

solve that halting problem is not denied by this argument. Computers may

exist that compute the problem for machines much smaller than themselves. It

is a moot question whether the procedures described in this paper constitute an

algorithm. Certainly, the steps described here look like an iterative procedure

in which also algorithms are involved. But then, so do many other

computations in mathematics – iterative procedures that take the output of one

instance of an algorithm and use it as the input of another – computing the

Fibonacci series for instance, or its sum. But all such computations stumble

on the apparently forgotten fact that any computer implementing them must be

finite, however large. Hence, there will always be a Fibonacci number so big

that no machine has ever computed it. What is really expressed in an

algorithm and an associated iteration is the knowledge that the algorithm and

iteration will always work. It is not that the actually infinite sequence of all

Fibonacci numbers has ever been computed – something which is impossible

– but that we know that a potentially infinite number of them could be

computed, in the sense that given two last Fibonacci numbers, we could

compute one more. In this the Halting Problem is no exception.

The existing impossibility proof is not really an impossibility proof. What

would an impossibility proof for the Halting Problem look like? Such a proof

would have to show that for some particular number N mathematical induction

breaks down. We require an argument that for at least one machine of finite N

states there is no possibility of determining whether or not it halts. There must

be a specific counter-example produced.

See also Appendix 3 – the Church-Turing thesis.

Is the Halting Problem really so different?

What gives the impression that the Halting Problem is

different is merely the fact that we hit the buffers of our

ability to compute/solve the halting problem for a given

machine. Already for five-state machines there are said

to be 98 hold-outs – machines that cannot be solved.

However, it is a claim here that they have now all been

shown to be halting. Already by the five- and six-state

machines we are reaching problems too large for

practical solution – subject to the caveat that even these

difficulties may have been exaggerated. But in principle

there is no distinction between the situation for Turing

Machines and the situation for the application of

algorithms in general. All machines are finite, even if it

is true that it is always possible in theory, given one

machine, to build a larger one.

Where mathematical induction breaks down

Such a situation in general can obtain in mathematics.

For example, there are algorithms providing solutions to

quadratic, cubic and quartic equations; but it has been

shown that the quintic is insoluble. Hence any attempt to

provide a general solution to equations of all degree by

mathematical induction would break down for degree 5.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

31

 Empirical versus non-empirical methods

Boolos and Jeffrey [1980] proposed an empirical approach to the Halting

Problem. (See quotation.) It is an error to apply an empirical procedure alone

to this problem. What happens to a Turing machine is wholly determined by

the states of the machines, its program and the configuration of the tape. It is

not an empirical question but a question of logic and combinatorics.

In practice, a mixture of empirical and non-empirical – number theoretic –

approaches is appropriate. As it happens, as soon as one devises an algorithm

to screen for certain types of machine, then the application of that algorithm is

a process that combines both the empirical and the non-empirical. The

screening process is empirical – the knowledge that the screening process

classifies some machines as halters and non-halters is not. When we make a

trace by running the machine from standard configuration, then that is an

empirical method. But, perhaps, it is a starting point for an investigation.

Human reason gets involved, and starts to say to itself, now what really is

going on here? Can I make sense of this? It is to be observed that hitherto,

when computers were run, only one tape configuration, the standard input of a

blank tape starting in the first state, had been considered. The true nature of a

Turning machine to compute a function upon a finite configuration of the tape

given any starting state would appear not to have been recognised until now.

The synthetic character of mathematical induction

If all mathematical reasoning is a species of algorithm, it follows that

mathematical induction is also a species of algorithm. Here we have not

assumed at the outset that mathematical induction is or is not one or the other,

but we have employed it in a proof that the Halting Problem can be solved. If

the conclusion is valid, it therefore follows that mathematical induction cannot

be a species of computation, and that the thesis that it is a species of

computation is refuted. It seems that computability is a sub-branch of number

theory, not the other way around.

Accepting that the Halting Problem is solved in the way given in this paper,

we may ask what it is about mathematical induction that makes it non-

computational. The early twentieth century saw the rise of mathematical logic

and set theory together with the claim that these were the foundation of all

mathematics.

The empirical approach to the Halting Problem

The question is, ‘Why isn’t p computable in some

intuitive sense?’ After all, there are only finitely many

different graphs of n-state machines if we don’t trouble

to number any of the nodes except for node 1, the starting

node. Then for each n we can (in imagination), anyway)

set all the n-state machines going, starting in state 1 on a

blank tape, and await developments. As time passes, one

or another of the machines may halt, at which point we

can see whether it is scanning the leftmost of an

unbroken string of 1s on an otherwise blank tape. If it

does halt in that standard position, we find its

productivity by counting the number of 1s in the string,

but if it halts in a non-standard position we know that its

productivity is 0. But there is a catch: some of the n-state

machines may never halt, so that no matter how long we

wait, it may be that the productivity of one or more of the

n-state machines cannot be determined in the way we

have just sketched. Those machines will have

productivity 0 because they never halt.

Boolos and Jeffrey [1980] p. 40

Claims made for first-order logic and set-theory

Most logicians (though perhaps not most

mathematicians) are convinced that all correct proofs in

mathematics could, with enough effort, be translated into

formal proofs of first-order logic.

Wolf [2005] p.29

ZFC is a remarkable first-order theory. All of the results

of contemporary mathematics can be expressed and

proved within ZFC, with at most a handful of esoteric

exceptions. Thus it provides the main support for the

formalist position regarding the formalizability of

mathematics. In fact, logicians tend to think of ZFC and

mathematics as practically synonymous.

Wolf [2005] p.36

Set theory is the foundation of mathematics. All

mathematical concepts are defined in terms of the

primitive notions of set and membership. In axiomatic

set theory we formulate a few simple axioms about these

primitive notions in an attempt to capture the basic

“obviously true” set-theoretic principles. From such

axioms, all known mathematics may be derived.

However, there are some questions which the axioms fail

to settle, and that failure is the subject of this book.

Kunen [1980] p.xi.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

32

 The possibility also that set theory is not a form of computation would seem to

have been laid aside. Already in 1914 Henri Poincaré expressed his critical

opposition to the rising movement in favour of symbolic logic. In his essay

Mathematics and Logic, he stated that the principle of complete induction

“appeared to me at once necessary to the mathematician and irreducible to

logic.” (Poincaré [1996] p. 148.) This claim made by Poincaré is upheld by

the conclusions reached here. Therefore, it is important to examine afresh the

character of mathematical induction.

In the conclusion of any argument from mathematical induction the expression

“all numbers” refers to a potentially infinite collection – the possibility of

adding one to a given number never reaching an end. This idea of the

unendingness of the operation of adding 1 is not found directly in the act of

adding 1. Taking a number and adding 1 to it does not mean a collection; the

meaning of the potential infinite is not expressed by it. Nor is it expressed by

the idea of a starting place in the sequence of natural numbers. Mathematical

induction simply replicates in an argument the movement contained in the

idea of starting somewhere, 0, and adding one more each time, and so on and

so on ... endlessly. Induction ties by algebra or a species of argument a result

to that 0, and a result to that act of adding one, but it rests on the underlying

notion of a potential infinity. But that notion is not found in the meaning of

the operation of adding one, which means only adding one; it is implied by

that operation but not meant by it.

Therefore, mathematical induction is a species of synthetic reasoning. By its

means the human mind steps from two premises that have no connection in

meaning with a conclusion that expresses a new meaning, one that

encompasses the concept of (potential) infinity. This inference is also

necessary. Hence we have a pattern of inference that is both necessary and

synthetic. It is synthetic because the conclusion expresses more information

than is contained in the premises. How it can also be necessary is a

metaphysical problem not undertaken here.

Poincaré’s objection

... syllogistic reasoning remains incapable of adding

anything to the data given in it; these data reduce

themselves to a few given axioms, and we should find

nothing else in the conclusions.

... mathematical reasoning has of itself a sort of creative

virtue and consequently differs from the syllogism.

The difference must even be profound. We shall not, for

example, find the key to the mystery in the frequent use

of that rule according to which one and the same uniform

operation applied to two equal numbers will give

identical results.

All these modes of reasoning, whether or not they be

reducible to the syllogism properly so called, retain the

analytic character, and just because of that are

powerless.”

Quoted in Detlefsen [1990], and p.291 of Jacquette

[2002]. The original is in Poincaré, The Value of Science

(1905) in The Foundations of Science, ed., and trans. G.

Halsted, The Science Press, 1946.

Mathematical Induction

Particular Result: the result is true for 0k = (or for some

other starting value).

Induction Step: if the result is true for the number k then

the result is true for 1: L .

Conclusion: the result is true for all numbers n (or for all

n greater than the starting value).

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

33

 Knowing and computing

From the phenomenological point-of-view human beings are aware that they

think, hold notions, use concepts and understand meanings. We may hold it as

a possibility that all such self-conscious activities have their ground in some

underlying mechanism, say, in the mechanical operations of the brain, and that

such a mechanism runs as a species of algorithm would upon a computer. But

such metaphysics is not given directly to phenomenological intuition. A

person seeks to establish truth and knowledge, and mathematical induction is

one means by which such a person seeks these things when considering

number. Therefore, prima facie, there is no reason at all to suppose that

knowing and computing are one and the same, and that arguments used by

human reason to establish to reason that such-and-such a statement is known

to be true is a species of algorithm. The cultural viewpoint that has led to the

belief that mathematical induction is a species of computation no doubt runs

throughout the history of mathematical logic, of set theory and of computing

science in the twentieth century and into our own, but if mathematical

induction does establish results known to be true, and also known not to be

algorithms, then indeed we have no reason to suppose that knowing in general

is also a species of computation.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

34

Appendix 1: The halting problem is not effectively

computable

The halting problem is the problem of designing an effective procedure for

identifying Turing machines which never halt, once started in their lowest-

numbered states on blank tapes.

Productivity

Let T be a Turing machine of n states using only the symbols 0 and 1.

Initially T scans only a blank tape. The machine T either halts in “standard

configuration” scanning the leftmost of an unbroken string of 1s on it

otherwise blank tape, or it does not. If it does not it may either not halt at all,

or halt scanning some other configuration. The productivity of T is defined

to be:

()
the length of the string that scans if it halts in standard configuration

0 otherwise

T
p T


= 


This is a function defined for each Turing machine. From this we may derive

another function, ()p n which is defined to be the productivity of the most

productive n-state Turing machine.

The Busy Beaver is a Turing machine which computes the function p. The

machine must read and write only the symbols 0 and 1. The Busy Beaver

Problem is the problem of designing such a machine.

Properties of productivity (Boolos and Jeffrey [1980] p. 35.)

(1) ()1 1p = . There are 25 different 1 state machines corresponding to 25

flow graphs of one node. By examination of cases we can show that some of

these do not halt and of those that do the maximum productivity is 1.

(2) ()47 100p  . It is possible to construct a machine of 47 states with

productivity 100. Machines with 47 states do exist with greater productivity

but this is not what is asked for in this result.

(3) () ()1p n p n+  . We can always add one more state to a given machine

of n states that adds another 1 and has productivity () 1p n + .

(4) ()11 2p n n+  . This is another instance of a concrete n state machine

that has productivity ()11 2p n n+ = .

From Boolos and Jeffrey

We confine our attention to Turing machines which read

and write only two symbols B and 1. Any such machine

M can be thought of as computing some total or partial

function f from positive integers to positive integers as

follows: To discover the value (if any) which f assigns to

the argument n, start M in its lowest-numbered state,

scanning the leftmost of a block of n 1s on an otherwise

blank tape. If M eventually halts in a standard

configuration, i.e. scanning the leftmost of a block of 1s

on an otherwise blank tape, ()f n is the number of 1s in

that block. But if M never halts, or halts in some

nonstandard configuration, ()f n is undefined.

Boolos and Jeffrey [1980] p. 34.

Boolos and Jeffrey use the symbol B where we in this

text use the symbol 0.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

35

 Proposition

The busy beaver problem is not effectively computable: there is no machine

that can compute ()p n .

Proof

Assume that such a machine exists, and let it have k states. It would start

scanning the leftmost of n 1s and finish scanning ()p n . Call this a “Busy

Beaver Machine” (BB). Then there exists a machine that comprises a

machine that writes n 1s followed by two copies of the BB machine.

Write 1s BB BBn ⎯⎯→ ⎯⎯→

This machine has 2n k+ states and its productivity is ()()p p n . Then,

assuming that BB exists we have () ()()2p n k p p n+  . From the result

() ()1p n p n+  it follows () () if p i p j i j  , from which it follows by

contraposition that () ()if then j i p j p i  . Let 2j n k= + and ()i p n= ,

then this gives with () ()()2p n k p p n+  the conclusion ()2n k p n+  .

This remains true if n is increased by 11 to give ()11 2 11n k p n+ +  + . But

then ()11 2p n n+  entails 11 2 2 , 11 2n k n k n+ +  +  , which is true for all

n. But putting 12 2n k= + we obtain a contradiction. Therefore, BB does not

exist.

Proposition (Boolos and Jeffrey [1980] p. 30). If the halting problem is

solvable, then the function p is computable.

Proof

Suppose we have “a systematic procedure for identifying

non-halters ... If we had such a procedure we could apply

it to the graphs of all the n-state machines while those

machines are working (having been started in their

lowest-numbered states, on blank tapes). After some

finite period of time, each machine will either have

halted or have been identified as a non-halter, so that for

each n, there would be some period of time after which

we would know the productivity of every n-state

machine. For each n, we would then be able to compute

()p n : the function would be computable in an intuitive

sense if there were a systematic procedure for identifying

non-halters.”

Boolos and Jeffrey [1980] p. 30.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

36

Appendix 2: Turing machines

A Turing machine is a device for performing a computation. It may be

visualised as a car moving along a track or tape that is divided into segments

and is potentially infinite in length. The segments contain symbols. A result

shows that only two different symbols are required. These are designated 0

and 1. The car scans one segment of the track at a time. The car has a

program that instructs it what to do when it scans a symbol on the track. The

instruction depends on (a) the state the car is in when it scans the symbol and

(b) on the symbol. These two pieces of information are sufficient to instruct

the car to perform an action and to tell it which state to go to next. This

information is encoded in a quadruple, so the mechanical description of the

machine is an implementation only of an abstract structure.

Definition, quadruple

A quadruple is an ordered 4-tuple of the form ()i i i iq q    where ,i iq q  are

states,  0,1 i
and i  is an action,  0,1, ,i L R   . A quadruple encodes

an instruction to the Turing machine.

Proposition (Boolos and Jeffrey [1980] p. 30)

Any function from positive integers to positive integers which is Turing

computable is Turing computable in monadic notation by a Turing machine

which uses only the symbols 0 and 1.

Definition, action

An action is one of the following.

0 :1 Change the scanned symbol on the tape to 1. Similarly, for 1: 0 .

0: L On scanning the symbol 0 move left. Likewise, 1: L .

0 : R On scanning the symbol 0 move right. Likewise, 1: R .

Example: ()2 1 5L is read, “When in state 2 scanning 1 move left and enter

state 5”.

Definition, program, Turing machine

A program is a set of quadruples. A program is also called a Turing machine.

This summary is as brief as it may be. However, using this and the examples

of the text, a reader can be fully acquainted with the whole topic in very little

time. For a more extensive introduction see Boolos and Jeffrey [1980].

Flow graphs

Figure 24. Flow graph template

Figure 25. Example of a flow graph

When in state 2 scanning 1 move left and enter state 5.

This corresponds to the action: ()2 1 5L .

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

37

Appendix 3: The Church-Turing thesis

There are several distinct mathematical descriptions of effective computation.

1. Turing’s analysis based on Turing machines.

2. The Gödel-Herbrand analysis based on recursive functions.

3. An analysis in terms of Abacus machines.

4. Church’s analysis based on his lambda calculus.

5. Markov algorithms.

6. Post systems.

Definition, The Church-Turing Thesis

The Church-Turing thesis is the claim: -

1. The six analyses of what is effectively computable given above are all

formally equivalent. Call this equivalence class the class of all Turing

computable functions.

2. All effectively computable functions belong to the class of all Turing

computable functions and conversely.

This definition equates a mathematically precise notion of Turing computable

function to the intuitive notion of effectively computable function. (This point

has been frequently expressed in the literature.) This gives the thesis a very

peculiar status. Part (1) is a mathematical theorem that has been formally

proven, and is thereby not contentious. Part (2) is said to be an empirical

thesis and to be supported by “evidence” of an observational nature rather than

mathematical.

It is a consequence of this empirical thesis that it is expected that should

anyone come up with a new analysis of what an effectively computable

function is, then it will be proven to belong to the class of all Turing

computable functions. In the Church-Turing thesis an extension (the class

of all Turing computable functions) is equated with an intension (all

effectively computable functions). Notwithstanding the empirical character of

part 2 of the definition above, we take it as a definition of what effectively

computable means. To demonstrate the pertinence of this, consider two

quotations from the seminal paper Computing Machinery and Intelligence by

Turing (Turing [1950]).

The Church-Turing Thesis in the literature

1. “Church’s thesis: all computable functions are Turing

computable.”

Boolos and Jeffrey [1980] p. 54.

2. “In around 1936, several mathematicians (Alonzo

Church, Stephen Kleene, Emil Post, and Alan Turing)

independently proposed precise definitions of the notion

of effective procedure. Even though their definitions

were very different from each other conceptually, it was

proved that these definitions are all equivalent, in the

sense that every function that can be computed under one

definition can be computed using the others as well.”

 Wolf [2005] p.96

3. CTT: “... no human computer, or machine that mimics

a human computer, can out-compute a universal Turing

machine”

p.10 of Abramson in Olsweski et al. [2006] who is

quoting from Jack Copeland, 2002a, p.67

The equivalence of these definitions, as well as our

substantial experience with computer languages and

programs, provide strong empirical evidence that these

definitions do in fact correctly represent the intuitive

notion of an effective procedure, or mechanical

computation. There is no way to prove this, but it is a

standard view as a sort of informal axiom, called

Church’s thesis..

Wolf [2005] p.96.

... we only permit digital computers to take part in our

game. [p.7]

The idea behind digital computers may be explained by

saying that these machines are intended to carry out any

operations which could be done by a human computer.

The human computer is supposed to be following fixed

rules; he has no authority to deviate from them in any

detail. We may suppose that these rules are supplied in a

book, which is altered whenever he is put on to a new

job. He has also an unlimited supply of paper on which

he does his calculations. He may also do his

multiplications and additions on a “desk machine”, but

this is not important. [p.8]

Computing Machinery and Intelligence by Turing

(Turing [1950]).

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

38

 These quotations provide a description of what Turing means by “effective

computation” and following fixed rules without deviation lies at the core of

this. But even this is ambiguous, and the implicit notion of what we shall take

for a rule serves to convert the discussion into a species of definition.

Turing also places emphasis on digital computers. If we are restricting our

attention to digital computers, we have certainly very good evidence of the

mathematical variety for accepting the Church-Turing thesis. This concerns

the structure of a digital machine that is made solely of binary switches. The

binary switches restrict the digital computer theoretically to a very specific

domain, whose topology can be precisely delimitated, at least in the sense of

being given an upper bound as a Boolean algebra. Hence, we adopt the

Church-Turing thesis as a definition of what is effectively computable, and as

a theorem about digital computers and reject the claim that it is an empirical

thesis.

Church –Turing Theorem

The six analyses (1) Turing’s analysis based on Turing machines, (2) The

Gödel-Herbrand analysis based on recursive functions, (3) Abacus machines,

(4) Lambda calculus, (5) Markov algorithms, (6) Post systems are all formally

equivalent. Call this equivalence class the class of all Turing computable

functions.

Definition, Church-Turing thesis, V2

The Church-Turing thesis V2 is the statement that any effectively computable

function is defined to be a Turing computable function.

By defining effectively computable in terms of the equivalence class of Turing

computable functions, it makes no direct claim as to whether all mathematical

proofs are Turing computable: simply accepting this version Church-Turing

thesis does not force one to accept that mathematical proofs are computable.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

39

Appendix 4: Hold-out machines used as examples

Hold-out machine no. 60. Kellett [2005] B.9

Non-halting behavior. It is straightforward to demonstrate that no. 60 does

not halt for standard configuration. It has only one exit at X4, where it halts

on a 0. A backward trace by the method of exits constructs a tree with no

branches and minimal depth.

4

4

1

3 4

1

3 4

2 1

3 4 3

LOOP LOOP

Exit at

0

00

01 001

0010

0011 00101

001 1 001010

00 11 00101 0 00101

0 :1

1:

0 :1

1:

1:

1

X

R

R

R

There is no path backwards from this exit to the standard configuration. In

fact, this machine loops—is non-halting—for all almost all inputs whatsoever.

Figure 26. Hold-out no. 60.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

40

 Hold-out no. 54. Kellett [2005] A. 79.

We approach the solution to no. 54 (figure 27) by solving for a 4-state sub-

machine first, obtained by removing state Q2. We denote this machine by T4

(figure 28).

T4 halts in state Q1 on both a 0 and a 1. This machine has a sub-routine:

when we solve by the method of exits we find the program enters into an

infinite loop defined by the sub-routine. This is represented as finite

information using the over-bar notation. The loops bring the tree generated by

the method of exits to termini; the tree is thus shown to be a finite tree.

0

0

4

0 4

3

3

0

SUB-ROUTINE

1
1

11
1 10 11

10
10

101




→ 



1

1 1

4 0 4

3 4 3

3 0

0

0

1

4

1

3

LOOP

LOOP

Exit at

0 1

0 0 0 0 1

1 0 01 1 1

00 11

001

1 1
0100

10 11 11 11
1

10

1

01

:

1

L

X

H

 
  

→ =   
  



Complete Criterion for T4.

0 3 4

0 1 3 1 4 1

0 1 3 1 4 1

0 1 3 1 4 1

1 1

1 3 4

1 1

1 1

0 1 1 0 00 0 0 00

001 111 1 1 01 01 11

00101 11111 110 011 0 1 01

01 0100 00
1010 1111 1011 1111

1 1 1 1

0 0

S S S

H H H

H H H

H H H

S H H

H

= = =

= = =

= = =

  
= =   

  

=

We also solve for T5 (figure 29) by the method of exits. To solve the halting

problem for T5 it is not necessary to write out the complete criterion, but as

we wish to illustrate the iterative process that lies behind the inductive proof

that the Halting Problem is soluble, we do so.

Figure 27. Hold-out no. 54

Figure 28. T4 for no. 54

Figure 29. T5

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

41

 Method of exits for T5

1

1

1

2

1

0 1 2

0 1

0 0 0

2

1

0

0

LOOP

Exit at

0

0

1 0

110

0 10 0110 R 1 110

11 10 11110

0 1110 001 10

11 10

0 : 11 1110

0 :

0 :

11 1110

1 11110

1 111

1

0

:

L

L

L

X

R

X

S

=

=

1 2

1 0

0 2

1

0

0

0

Halting configurations

0 1 0

110 11 10

0 10 1 110

1

11
1110

0 10

001 1









Complete Criterion for T5

0 1

0 1 1 1

0 1 1 1

0 1

2 3

2 1 3 1

2 1

2 1

4

4 1

0 10 110 0 0

11 10 0110 110 110

11 1110 011110

1 0 10 1 0 00

1 110 1110

1 11110 11110

00 00

S S

H H

H H

H

S S

H H

H

H

S

H

= =

= =

=

= =

=

=

=

From the complete criterion we see that the starting standard configuration is

not among the halting configurations. Hence, T5 = no. 54 does not halt for

standard configuration.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

42

 Hold-out machine no. 20. Kellett [2005] B.4

This machine (figure 27) has one exit at X4. There are four inputs to state

Q1, so direct solution of this machine, though possible, would lead to a tree

with very many branches. In addition, there are cycles of periods of 1, 2, 3

and 4 states; the double cycles between states Q0 and Q1 and between Q1 and

Q2 are particularly tricky (see below). The writing of the complete criterion

for this machine is a difficult problem.

Direct proof of non-halting behaviour

We can directly prove that this machine is non-halting. Firstly, consider the

machine T4* (T4 star figure 27) obtained by deleting state Q3 from no. 20.

Then we adjoin state Q3 to T4* to make no.20. The point of this construction

is that in T4* there are only moves to the right on the tape; thus in no. 20 any

moves to the left are effected in the loop involving Q3. Supposing no. 20

halts (exits) at X4. Then by tracing back to state Q1 it must have a tape

configuration at exit thus:

4 0 1011 01 1 0 11

But this last configuration is not a candidate for a loop backwards through Q3,

because of the tape contradiction with the move 0:L. Any other candidate can

only have other symbols to the left of the 011, because T4* has only right

moves. To loop backwards through Q3 the machine must scan a 0 and then

move left into state Q1, so for the machine to reach the final state having

passed through Q3 and exit it must have a tape configuration of the form:

1 3.... 011 0 11

Here the box indicates an unspecified symbol. Then working backwards

through the loop with Q3 we obtain:

3 30 11 011 0 : L

We obtain another tape contradiction: we cannot have exited from X2

scanning a 0. There can be no path from the standard configuration at S0 to

X2, Q3, S1 and finally to X4. The 011 combination needed to make machine

no. 20 halt must be on the tape at the outset; it cannot have been written to the

tape by iteration of the instruction 0:1 at state Q0. Therefore no. 20 does not

halt for standard configuration. Another observation is that the only write

instruction in no. 20 is the 0:1 at state Q0. Therefore, the machine could never

erase a 1 once it has been placed onto the tape. Hence, the machine can never

place a 0 next to the final 1 at the supposed exit at X4. Again, this proves that

the 1 on which X4 halts must exist on the tape at the outset.

Figure 27. Hold-out no. 20

Figure 28. T4 star

A tape contradiction

1 3 1 3

Exit at 4 Exit from 3

0 1 1 0 11

required required

Tape contradiction

X Q

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

43

 Halting behaviour is a function of the initial tape configuration. A complete

criterion for an n-state machine Tn is a specification of those tape

configurations for any inputs to the machine that cause that machine to halt,

specifying the exit at which it halts, and giving completely the tape

configuration at any given exit.

If our purpose was only to demonstrate that no. 20 did not halt, we would be

done. But we also seek to illustrate the inductive method whereby we

demonstrate by mathematical induction that the halting problem for all Turing

machines is soluble. The essence of the inductive argument is that, given a

complete criterion for an n state machine, Tn then a complete criterion for the

n + 1 state machine made by adding one more state to Tn is also determined.

Since complete criteria can be written for all 1-state machines, this inductive

step proves that a complete criterion can be written for all Turing machines,

and thereby that the halting problem is solvable for all Turing machines.

It is intuitively clear that the inductive argument is valid, because ultimately

what happens inside a Turing machine is wholly determined by the initial tape

configuration and how the machine responds to it. It is a finite function. If a

machine involved no loops whatsoever, this result would be obvious.

However, while the loops themselves present difficulties, these do not prevent

the writing of a complete criterion. This is because each loop involves a finite

sequence of instructions, and hence any tape configuration that leads to non-

halting behaviour can be characterised by a finite description, in the same way

numbers with recurring decimal expansions may be characterised. If a

machine does not halt it is because of some infinite repetition of a portion of

the tape configuration.

Writing a complete criterion for a given Turing machine could be a problem

not worth the effort to solve. As the number of states of a Turing machine

increases, the permutations of repeat symbols can grow so large as to exceed

human patience. But this applies to all inductive proofs whatsoever. To prove

inductively that a result holds for all numbers, is not to say that the result has

been actually applied to all numbers whatsoever – that is impossible.

We begin by examining a three-state sub-machine of no. 20, designated T3.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

44

 T3 has exits at X0 and X2 (figure 29). It involves two 2-cycles: one between

states Q0 and Q1; the other between states Q1 and Q2. Whether this machine

enters an infinite cycle depends upon the tape configuration—one

configuration causes the machine to enter the Q0—Q1 loop, the other the

Q1—Q2 loop. Any permutation of such configurations will cause the

machine to halt. The over bar represents a tape configuration repeated a finite

but unspecified number of times, possibly zero times.

0 0

1 0

1 1

2 2

1 1 1 1

1 2

2 1 1 1

2 2

0 1

0 2

1 2

initial repeat terminal

1 1

0 1 0 1
0 01 011

0 0
11 11 11 11

1 0 1 0
1 11 0 01 011

1 10 11 0
0 1 11

0 0 1 0

0 00 01 0

H

H
E

H
E E

H
E E

H
E

H

H

 =

 =
=
 =
  = =   

=   
= =    

= 
=  

=

 =


When the machine moves through a configuration represented by the over bar,

it moves through the symbol in the same way in which it would move through

a single instance. Whether this machine halts at exits X0 or at X2 depends on

a terminal sequence. Whenever this machine moves along the tape, it moves

to the right, so the terminal sequence is the final end block to the right of any

repeat sequences. Depending on what state the machine is in when it starts

there is an initial configuration after which the machine enters the repeat

sequences, then the terminal sequence and halts. For any other initial

sequence, repeat sequence or terminal sequence, the machine does not halt.

Complete Criterion for T3

Figure 29. T3 for no. 20

Steps through the repeat cycles of T3

1 1

0 2

1 1

2

1

0 01 11

00 1 11

011 11

011

011

0 1 2

0 0 1 2 2 2

0 0 1 0 2 2

0 0 1 0 2

1 1 0 00 01 0 0 0

11 11
0 0 0 1 11 01 11 01 1 10 11 0

001 011

11 11 11 11 11 11
0 1 01 11 0 1 0 01 01 001 01 1 01 1

001 011 001 011 001 01

S S S

H H H

H H H

H H H

= = =

      
= = =   

      

                  
= = =         

                  
0

0 2 1 2 2 2

1 2

0 1
1

11 11 11 11 11 11
0 1 10 11 1 0 11 10 11 1 0 1 10 1 1 0

001 011 001 011 001 011

11 11
0 01 10 001 1 0

001 011

11
Here

001

H H H

H

  
 
  

                      
= = =           

                      

      
=   

      

  
 


 indicates any finite permutation of blocks of 11 and 001L: one is 11 11 001 11 001.


MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

45

Because of the complexity of the problem it is also useful to reverse this table

and correlate the outputs at the two exits X0 and X2 with their corresponding

inputs at the source S1. Only S1 need be considered because when we

construct the next machine “up”, the T4 machine, we only have a feedback

loop running through S1.

Figure 30. T4 for no. 20

To make the T4 machine we may add either state Q3 or Q4 to T3 (figure 30).

Here we add Q3 first. We can in fact show that T4 is halting for the standard

configuration—also demonstrated by the straight printout of the tape

configurations of No. 20 provided in Kellett’s [2005] paper, where the

machine exits on a 1 from state Q0 to state Q4 on line 39.

We solve by the method of exits. The trace is provided separately, together

with notes. In the solution an impossible configuration is shown in red.

These denote termini to the branches of the tree generated by the method of

exits. Configurations representing termini to branches of the tree are marked

in red by END. The standard configuration is almost at the deepest level of

the tree, which is to be expected. The tree always terminates as the

information expressed by the response of the Turing machine to any given

tape configuration is always finite, although it may be large.

0 2

0 0 2 1

0

1

2 1

0 1 2 1

0 2

1

Exit / output Source / input Exit / output Source / input

1 01 0 0 00

00 0

01 0*

1 0 1 0

11 11 11 11
11 01 11 01 11 1 0 11 10

011 001 011 001

11 11
001 01 1

011

=

=

              
= =       

              

  
=  

  

X X

H

H

H H

H 2 1

2

1 0 1

0

11 11
01 001 1 0 0 01 10

001 011 001

* Sequence of outputs for 01 0

0 00 00 0 01 0

In this table we include the potential input of 00 0 as this is the only way we can trace

back an

          
=     

          

=

H

H

0output to a standard configuration at .S

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

46

 From the tree generated by the method of exits, we could write the complete

criterion for T4. To do so, we would need to fill in the missing intervening

steps omitted by the “black box” method of viewing T3 as a machine

computing outputs for given tape configurations at its inputs, and ignoring its

internal states; these having already been considered at the earlier stage when

the complete criterion for T3 was constructed. We omit this construction

here; the method has been firmly established.

Regarding the non-halting behaviour of T5 we can confirm the earlier result.

By the method of exists we trace backwards.

4

4

0

1

Exit and halt at

1

1 1

0 11

X

From the trace of T4 we see that the configuration 10 11 (state Q1) never

appears in it. Therefore, there is no path to this configuration from standard

configuration, and T5 = no. 20 does not halt.

Figure 31. T5 for no. 20

H
ol

d
ou

t
m

ac
h

in
e

n
o.

 2
0

T
4

 T
R

A
C

E
 F

O
R

 T
H

E
 M

E
T

H
O

D
 O

F
 E

X
IT

S
.

T
4

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

48

Appendix 5. B5 Champion

The presence of the multiple cycles in the B5 Champion (figure 32) creates

special difficulties. The cycle between Q2 and Q3 has the effect of

interchanging a 1 for a 0 in any position in a block of 1s run through while in

state Q3. For example, when in a backward trace (by the method of exits) we

encounter the configuration 30 1110 . We are obliged to trace backwards as

follows.

3

3 3 3

2 2 2

1 11:

0 1110

01 110 011 10 0111 0

00 110 010 10 0110 0

01 010 011 00R

Because the program then enters the other cycles the effect is that any number

of permutations in a bloc of 1s may be halting. Hence the number of halting

configurations for this machine is large, even though, in the final analysis,

finite. The number of changes of the loop (the shift-number) defined by sub-

machine Q0, Q1, Q2 and Q4 is at most 6. It is this fact that makes the

problem finite.

One challenge is to show that by the method of exits the machine when

starting in standard configuration does halt. To solve the problem we break

the Champion into a sub-machine T4 plus one more state. Removing state Q0

leads to an excessive number of permutations. We remove state Q3. T4

(figure 33) has a sub-routine, and we apply the method of exits.

Figure 32. The B5 Champion

Figure 33. T4 for the B5 Champion

Sub-routine for T4

1

1

4

4 0

2

2 1

1 0

1 4

1

2

4

1

2

1
1

1 1
1 1 0

1 11
1 11 0 0 111

1 0
1111 1 00 1100

0 0
1 100

1 00
1 1100

1 1

:

00

0 1





  

→  
  






2

1

4

2 2

1 0

1

4

2

LOOP

Exit at

1

1 1

0 1 11
111

1 0 0 0
1100

0 0

1 00

1 100

X





  

 
  






0

1

0

4

1 4

2

4 2

0

2 1

1

1

4

2

Exit at

1
1

1 1
0 1 0

1 11
1 01 1 0 111 1101

0
101 101 110 1100

0 0
11101

1 00
LOOP

LOOP
1 100

X





   

 
  






MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

49

 T5 is obtained from T4 by addition of state Q3 In T5 there is only one exit at

X0. As there is only one input to T4 at S2 only that part of the complete

criterion for T4 is required. Our aim is only to show that T5 does halt in

standard starting configuration; that is, the standard configuration is found as

an element of the tree generated by the method of exits.

We observe that the permutations generated by these functions are

considerable. Of special interest are the following instances of the schema

from the method of exits.

2

2 2

2 2

2 2

2 2

1 100 1110

1 1000 11010

1 1100 1110

1 111110 111110

S

H

H

H

H

=

=

=

=

The interaction between these exits and the 1:L loop at state Q3 generates in

the tree of exits for T5 many branches: the tree will be very wide. In the

backward trace we see that the input to S2 must be a 1 because of the

instruction 0:1 from the output of Q3, but the above schema indicate that

within the machine T4 it is possible to convert a 0 at Q2 to a 1 at Q2. Hence,

the complexity of this problem. It is helpful to reverse the information in the

complete criterion and write out the transitions from S2 to X0 and X2

explicitly.

Figure 34. T5 for B5 Champion

Method of exits for T5

2

2 2

2 2

2 0

0

2

0

1 100 1110

111 111
1 11 0 111 0

1100 1101

1 101 1101

1101111 1101 111
1 11 111

10 111100 1101

S

H

H

H

H

=

      
=   

      

=

      
=   

       

2 0 2 2

2 2

2 0

2 0 2 2

0

2

0 2 2

1 000 1110
1 0 11

111 111
1 101 1101 1 11 0 111 0

1100 1101
1101111 1101 111

1 11 111 111 111
10 111100 1101 1 100 0 1101 0

1100 1101

S X S X→ →

→
→

      
→ →   

      
       

→           
  →          

      

0 2 2 2

2 2

2 20 2

0 2

0 2 2

2

0

1 1 0 1

1110 1 100

111 111
111 0 1 11 011 1 0

1101 1100
1101 1 101

111 111
1101 1101 0 1 100 0111 111 1101

111 1 11 1101 1100
11 101101 1100

Note: 1

→ →

→

      
→   →

      
→

      
    →        

→          
      

2 21010 1 1100→

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

50

 We are now in a position to show how the method of exits would identify the

branch in which the standard configuration appears. This is a very wide

multiply branching tree, and we demonstrate only that (a) the standard

configuration appears among the branches; (b) that the branch in which the

standard configuration appears is finite. It ends on a CONTRADICTION.

0

0

0 0 0 0

2 2 2 2

2 2

3

3 3 3

Exit at

1

111 111
11 111 1101 111 11 1101

1101 1101

111 1

ETC. ETC

11
1 0 1 11 1101 1 11 10 1 101

1100 1100

1 1111110 1 111100110

0 1111110

0 11111110 01 1111110 01 11

. ETC.

1110 .

.

.

ETC

X

      
   
      

      
   
      

3 3

2

2

2

2

3

3 3

3

2

2 2

3

3 3

. 0111111 10 01111111 0

01111110 0

01111110 0

0111 1110 0

01111 1100

01110 1100

011101 100 0111011 00

0111111011 00

0111111010 00

01 111100000 01111 100000

00 11110000

ETC. ETC. ETC.

ETC.

ETC0

001 111000

0 :1

00 0

0 :1

0 :

.

0111 1

2 2

3

3 3

2

2

3

3 3

2

0

0

111100000 ... 001111 00000

001111 00000 001111 00000

001110 00000

001 11000000

000 11000000

00 01 1000000 00011 000000

00010 000000

0001 000

0 :1

CONTR

ETC. ETC.

ADICTION

0000

0000

1110 o

ET

r

00000

 1101

C.

ETC

0

re

SC0

.

0

quired

We have demonstrated that the method of exits does lead to the standard

configuration within a finite number of steps, and that the branch on which

this configuration appears does end—it is finite.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

51

 In the preceding table, any branch that has not been investigated is shown in

blue by the expression ETC. The contradictions are shown in red, and the

branch leading to the standard starting configuration is boxed a marked SC in

green. The difficulty created by the 1:L loop at state Q3 is demonstrated by

this tree. Every time the machine is in state Q3 scanning a 0 to the right of

which there is a block of 1s, it might have reached that state from any one of

those 1s by an iterated move to the left (1:L). So this tree has many

branches—that is, is very wide.

We have demonstrated that the method of exits does lead to the standard

configuration within a finite number of steps, and that the branch on which

this configuration appears does end—it is finite.

Permutator

Here we follow the method of the proof of the Complete Criterion Theorem

given in the text. We add the permutator in two stages, firstly as an exit, and

then as a loop back.

Following the method in the text, we add the permutator as a loop from the

exit X3 back to the input S3 (figure 34) This time the part of the complete

criterion for T5(i) that interests us concerns the inputs at S3 as these only can

be involved in loop back to X3.

3

3 3 3 0

3 3 3 0

3 3 3

0

0 110 1111 0 0 11

111 111
0 11 0 111 1 0 101 1101

1100 1101

1101111 111 111 1101 111
0 100 0 1101 1 0 11 111

11101100 1101 1100 1101

S

H H

H H

H H

= =

      
= =   

      

               
= =         

               

If again we now apply the method of exits to T5(ii) (figure 35) we again

obtain a tree which is very wide involving multiple configurations.

This machine has a cycle of period 9. To reach the exits from a starting

configuration we must consider a configuration of 12 symbols. There are

49152 different configurations for the machine starting in state Q0. So we

select some of these at random. To illustrate the reduction technique of the

text when applied to the inputs of T5 (ii). We give four examples.

Figure 34. T5 (i)

Step 1 of the method in the proof of the Complete

Criterion Theorem. The permutator is replaced by an

exit.

Figure 35 T5 (ii)

Step 2 of the method in the proof of the Complete

Criterion Theorem. The permutator is added to T5 (i).

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

52

 First Example

0 0

0

1

2 4 1 2

3

3

2

Test input: S 0 0100 111001010 0

random permutation of 12 symbols

1 0 0100 111001010 0 permutation of 12 symbols

2 0 0101111001010 0

3 0 01011 1 1 0 01010 0 exit from cycle

4 0 01011111 01010 0

5 0 010 1111101010 0

6 0 011 1111

=

2

2 4 1 2

3

3

2

101010 0 new permutation of 12 symbols

7 0 011 1101010 0000 remove redundant loop, new permutation

8 0 011 1 1 0 1010 0000 exit from cycle

9 0 011111 1010 0000

10 0 0 111111010 0000

11 01 111111010 0000 new permutation of 12

2

2 4 1 2

4

0

 symbols

12 01 111010 0000000 remove redundant loop, new permutation

13 01 1 1 1 010 0000000

14 01111010 0000000

15 01111011 0000000 exit and halt

During the execution of the method 23 permutations have been tested. Only

two of these, the first and the last, start in state Q0. There are 245760 tape

configurations in all to check.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

53

 Second example

0 0

0

1

2 4 1

0

1

2

3

Test input: S 0100 110000000

random permutation of 11 symbols

1 0100 110000000 permutation

2 0101110000000

3 01011 1 0 000000

4 01011100 00000

5 01011101 00000

6 010111010 0000 exit from cycle

7 010111011 0000

8 010111

=

3

2

4 1 2

3

3 3

2

2

2 4 1 2 4 1

0

1

0 110000

9 0101111 110000 new

10 01011111 1 0 000 exit from cycle

11 0101111111 000

12 010 1111111 000

13 011 1111111000 new

14 011 1111000000 eliminate

15 011 1 1 1 1 0 00000

16 01111110100 000

17 01111110101 000

18 0111111 2

3

3

2

2 4 1 2

01010 00 exit from cycle

19 011111101011 00

20 0111111010 1100

21 0111111011 1100 new

22 0111111011 1 1 0 0 exit

66 tape configurations tested. All halt.

3

3

2

2

4 1 2

3

3

2

4 1 2 4 1

23 0111111011111 0

24 01111110 111110

25 01111111 111110 new

26 01111111 11000 0 eliminate

27 011111111 1 0 00 0

28 01111111111 00 0 exit from cycle

29 00 11111111110 0 new

30 01 11110000000 0 eliminate

31 011 11 1 0 000000 0

32 0

1

2

3

3

2

4 1 2

3

3

2

2

01111100 00000 0

33 01111101 00000 0

34 011111010 0000 0 exit from cycle

35 011111011 0000 0

36 0111110 110000 0

37 0111111 110000 0 new

38 01111111 1 0 000 0 exit

39 0111111111 0000 0

40 0 0 11111111100 0

41 01 111111111000 0

42 01 1

4 1 2 4

0

1100000000 0 eliminate

43 011 11 0 0000000 0

44 011111 0000000 0 exit and halt

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

54

 Third example

0 0

0

1

2

3

3

2

Test input: S 0 0000 000000000

standard configuration

1 0 0000 000000000 0 standard configuration

2 0 0001 000000000 0

3 0 00010 00000000 0

4 0 00011 00000000 0 exit cycle

5 0 000 1100000000 0

6 0 001 1100000000 0 new permutation

=

4 1 2

3

3

2

4 1 2 4 1 0

1

2

3

3

2

7 0 0011 1 0 0000000 0

8 0 001111 0000000 0 exit cycle

9 0 00 11110000000 0

10 0 01 11110000000 0 new

11 0 011 11 1 0 0 00000 0

12 0 01111101 00000 0

13 0 011111010 0000 0

14 0 011111011 0000 0 exit

15 0 0111110 110000 0

16 0 0111111 110000

4 1 2

3

3

2

2

4 1 2 4

1

0 new

17 0 01111111 1 0 000 0

18 0 0111111111 000 0 exit

19 0 0 111111111000 0

20 01 111111111000 0 new

21 01 111000 0 eliminate redundant

22 011 1 1 0 0 0 0

23 011111 00 0 exit and halt

47 tape configurations tested. All halt.

Standard configuration halts.

Fourth example

0 2

2

4 1 2

3

3

2

4 1 2 4 1 0

1

2

3

3

3

3

2

test input: 0 1 110 0

0 1 110 0 new permutation

0 11 1 0 0 exit cycle

0 111 1 0

0 0 11110

01 11110 new permutation

011 11 1 0 0 0

01111101 0

011111010 0 exit cycle

011111011 0

0111110 110

0111111 110

0 0 111111110

01 111111

=S

2

110

01 110 0 eliminate redundant cycles

LOOP

28 configurations (up to redundancy) tested.

LOOP = non-halting cycle identified.

All 28 configurations are non-halting.

MELAMPUS SOLUTION TO THE HALTING PROBLEM ©BLACK’S ACADEMY LIMITED

10

References

Boolos, George and Jeffrey, Richard [1980]

Computability and Logic. Second edition. Cambridge University Press. Cambridge. (First edition, 1974)

Wolf, Robert S [2005]

A Tour through Mathematical Logic. The Mathematical Association of America.

Abramson, Darren [2006]

Church’s Thesis and the Philosophy of Mind in Olszewski et al. [2006]

Poincaré, Henri [1946]

The Value of Science (1905) in The Foundations of Science, ed., and trans. G. Halsted, The Science Press, 1946.

Poincaré, Henri [1996]

Science and Method. Trans. Andrew Pyle. Routledge, London 1996.

Detlefsen, Michael [1990]

Brouwerian Intuitionsism, Mind 99, 396 (1990): 501 – 34. Reprinted in Jacquette [2002]

Jacquette, Dale [2002] Ed.

Philosophy of Mathematics, An Anthology. Blackwell.

Kellett, Owen [2005]

A multi-faceted attack on the Busy Beaver Problem. Rensselaer Polytechnic Institute, Troy, New York. 2005.

Machlin, R. & Stout, Q. [1990]. The complex behaviour of simple machines. Physics D 42, 85-98.

Ross, Kyle; Owen, Kellett et al. [2006]. A New-Millennium Attack on the Busy Beaver Problem. Rensselaer Polytechnic

Institute, Troy, New York. 2006.

Turing, Alan [1950]

Computing Machinery and Intelligence. Mind LXI (236), p. 433 – 460. Also reprinted in Anderson [1964].] ed. Minds and

Machines, Contemporary Perspectives in Philosophy, Prentice-Hall, New Jersey.

	X 001 Title pages
	X 101 Introduction page 01
	X 102 Introduction page 02
	X 103 Introduction page 03
	X 104 Introduction page 04
	X 201 Method of Exits page 05
	X 202 Method of Exits page 06
	X 203 Method of Exits page 07
	X 204 Method of Exits page 08
	X 301 Holdouts page 09
	X 302 Holdouts page 10
	X 303 Holdouts page 11
	X 304 Holdouts page 12
	X 305 Holdouts page 13
	X 306 Holdouts page 14
	X 401 Method of Inputs page 15
	X 402 Method of Inputs page 16
	X 403 Method of Inputs page 17
	X 404 Method of Inputs page 18
	X 405 Method of Inputs page 19
	X 501 Proof page 20
	X 502 Proof page 21
	X 503 Proof page 22
	X 504 Proof page 23
	X 505 Proof page 24
	X 506 Proof page 25
	X 507 Proof page 26
	X 508 Proof page 27
	X 509 Proof page 28
	X 510 Proof page 29
	X 601 Considerations page 30
	X 602 Considerations page 31
	X 603 Considerations page 32
	X 604 Considerations page 33
	X 701 Appendix 01 page 34
	X 702 Appendix 01 page 35
	X 703 Appendix 02 page 36
	X 704 Appendix 03 page 37
	X 705 Appendix 03 page 38
	X 706 Appendix 04 no 60 page 39
	X 707 Appendix 04 no 54 page 40
	X 708 Appendix 04 no 54 page 41
	X 709 Appendix 04 no 20 page 42
	X 710 Appendix 04 no 20 page 43
	X 711 Appendix 04 no 20 page 44
	X 712 Appendix 04 no 20 page 45
	X 713 Appendix 04 no 20 page 46
	X 714 Appendix 04 no 20 page 47
	X 715 Appendix 04 no 20 page 48
	X 716 Appendix 04 no 20 page 49
	X 717 Appendix 04 no 20 page 50
	X 718 Appendix 04 no 20 page 51
	X 719 Appendix 04 no 20 page 52
	X 720 Appendix 04 no 20 page 53
	X 721 Appendix 04 no 20 page 54
	X 801 References page 55

