The solution to the halting problem

The problem is to determine the "complete criterion" for halting and non-halting tape configurations for a Turing machine. The diagram that follows illustrates the intuition that a proof by mathematical induction is certain. An example of a T_{n+1} machine is: -

 S_1, S_2, \ldots, S_n are input configurations; Q_1, Q_2, \ldots, Q_n are states of machine T_n ; X_1, X_2, \ldots, X_k are exit, halting configurations. \varnothing is the internal non-halting loop. In attaching T_n to new state Q_{n+1} we change one or more of the termini in T_n to exits \boxed{E} and direct these towards Q_{n+1} . The induction hypothesis is that the criterion for T_n is completely determined, and the particular step is that from the classification of all 1-state machines that there is a complete criterion for each. The induction step follows from a finite closure property. The problem takes the form

S_1	S_2	$S_3 \ldots S_n$					S_1	S_2	S_3	S_n	S_{n+1}
T_n					+	$Q_{n+1} =$	T_n				
X_1	X_2	X_3	X_k	Ø			X_1'	X_2'	X_3'	X'_m	Ø

Finite closure property

Let "the problem for …" be short for "the problem of determining the complete criterion for …". Then the proof is as follows: Let the problem for T_n be finite. We obtain T_{n+1} by attaching Q_{n+1} to T_n . The problem for Q_{n+1} is finite. Therefore the problem for T_{n+1} is finite. This is a closure property: the property "the problem for T_k is finite" is closed under the addition of finite information.

Remark

The complete criterion for any finite Turing machine can be determined by inductively constructing the machine from a 1-state machine in finite steps as in the above diagrams, and solving at each stage.

The solution to the halting problem

Definitions, determined, complete criterion

Let T_n represent a Turing machine. Then the statement: T_n is determined represents the property of T_n that for any given input configuration of finite information of the Turing tape with starting symbol S in state Q_i then it is determined:-

- 1. Whether T_n halts or does not halt when the machine is started with configuration in any of its internal states Q_i , $1 \le i \le n$.
- 2. If the machine halts, then the terminal configuration is known.

The information contained in a solution to this problem is called a *complete criterion*.

Complete criterion theorem

A complete criterion may be written for any Turing machine.

Proof

The proof is by complete induction.

Particular step

For n = 1. It is evident from the classification of all 1-state machines that there is a complete criterion for each. It is also solved by Boolos and Jeffrey [1998] on p. 35.

Induction step

The problem takes the form

 S_1, S_2, \ldots, S_n are input configurations; Q_1, Q_2, \ldots, Q_n are states of machine T_n ; X_1, X_2, \ldots, X_k are exit, halting configurations. \varnothing is an internal non-halting loop. In attaching T_n to new state Q_{n+1} we change one or more of the termini in T_n to exits E and direct these towards Q_{n+1} . The induction hypothesis is that the criterion for T_n is completely determined.

Proof of the induction step by the method of exits

The method of exits works by tracing back information from every terminus through the machine $T_{n+1} = T_n + Q_{n+1}$. In doing so we work around each loop in T_{n+1} , recording any 1-loop in it by an asterisk and each longer loop by a bar symbol. [See paper.] These encode the possibility of a finite repetition of a configuration leading to an exit (halting configuration) as well as identifying the infinitely recurring non-halting configurations. The problem is finite since the period of the maximal cycle in T_{n+1} is finite. But if the period of the maximal cycle in T_n is finite then the addition of T_n adds a finite number of loops to the maximal cycle; and the resultant maximal cycle and its period remain finite. Therefore, the problem can be solved by the method of exits for T_{n+1} . [There is also a proof by the method of "inputs".]