The solution to the halting problem The problem is to determine the "complete criterion" for halting and non-halting tape configurations for a Turing machine. The diagram that follows illustrates the intuition that a proof by mathematical induction is certain. An example of a T_{n+1} machine is: - S_1, S_2, \ldots, S_n are input configurations; Q_1, Q_2, \ldots, Q_n are states of machine T_n ; X_1, X_2, \ldots, X_k are exit, halting configurations. \varnothing is the internal non-halting loop. In attaching T_n to new state Q_{n+1} we change one or more of the termini in T_n to exits \boxed{E} and direct these towards Q_{n+1} . The induction hypothesis is that the criterion for T_n is completely determined, and the particular step is that from the classification of all 1-state machines that there is a complete criterion for each. The induction step follows from a finite closure property. The problem takes the form | S_1 | S_2 | $S_3 \ldots S_n$ | | | | | S_1 | S_2 | S_3 | S_n | S_{n+1} | |-------|-------|------------------|-------|---|---|-------------|--------|--------|--------|--------|-----------| | T_n | | | | | + | $Q_{n+1} =$ | T_n | | | | | | X_1 | X_2 | X_3 | X_k | Ø | | | X_1' | X_2' | X_3' | X'_m | Ø | ## Finite closure property Let "the problem for …" be short for "the problem of determining the complete criterion for …". Then the proof is as follows: Let the problem for T_n be finite. We obtain T_{n+1} by attaching Q_{n+1} to T_n . The problem for Q_{n+1} is finite. Therefore the problem for T_{n+1} is finite. This is a closure property: the property "the problem for T_k is finite" is closed under the addition of finite information. ## Remark The complete criterion for any finite Turing machine can be determined by inductively constructing the machine from a 1-state machine in finite steps as in the above diagrams, and solving at each stage. # The solution to the halting problem ## Definitions, determined, complete criterion Let T_n represent a Turing machine. Then the statement: T_n is determined represents the property of T_n that for any given input configuration of finite information of the Turing tape with starting symbol S in state Q_i then it is determined:- - 1. Whether T_n halts or does not halt when the machine is started with configuration in any of its internal states Q_i , $1 \le i \le n$. - 2. If the machine halts, then the terminal configuration is known. The information contained in a solution to this problem is called a *complete criterion*. ## Complete criterion theorem A complete criterion may be written for any Turing machine. ### Proof The proof is by complete induction. #### Particular step For n = 1. It is evident from the classification of all 1-state machines that there is a complete criterion for each. It is also solved by Boolos and Jeffrey [1998] on p. 35. ### Induction step The problem takes the form S_1, S_2, \ldots, S_n are input configurations; Q_1, Q_2, \ldots, Q_n are states of machine T_n ; X_1, X_2, \ldots, X_k are exit, halting configurations. \varnothing is an internal non-halting loop. In attaching T_n to new state Q_{n+1} we change one or more of the termini in T_n to exits E and direct these towards Q_{n+1} . The induction hypothesis is that the criterion for T_n is completely determined. ## Proof of the induction step by the method of exits The method of exits works by tracing back information from every terminus through the machine $T_{n+1} = T_n + Q_{n+1}$. In doing so we work around each loop in T_{n+1} , recording any 1-loop in it by an asterisk and each longer loop by a bar symbol. [See paper.] These encode the possibility of a finite repetition of a configuration leading to an exit (halting configuration) as well as identifying the infinitely recurring non-halting configurations. The problem is finite since the period of the maximal cycle in T_{n+1} is finite. But if the period of the maximal cycle in T_n is finite then the addition of T_n adds a finite number of loops to the maximal cycle; and the resultant maximal cycle and its period remain finite. Therefore, the problem can be solved by the method of exits for T_{n+1} . [There is also a proof by the method of "inputs".]