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The formal contradiction implied by the assumption that the universalized 
Gödel’s theorem is recursive 

 
 
1. John Lucas claims that “Gödel’s theorem states that in any consistent system which is 

strong enough to produce simple arithmetic there are formulas which cannot be proved 

in the system, but which we can see to be true” (my underlining).  [Quoted in FRANZÉN 

2005 p.117.]  He draws the conclusion “that no machine can be a complete or adequate 

model of the mind, that minds are essentially different from machines.” [LUCAS 1961] 
2. There is a related argument by Roger Penrose where he denotes Gödel’s theorem by the 

symbol  kP k : “The procedure that suggests itself is the following.  Let us accept that 

 kP k , which for the present I shall denote by 0G , is indeed a perfectly valid proposition; 

so we may simply adjoin it to our system, as an additional axiom.  Of course, our new 

amended system will have its own Gödel proposition, say 1G , which again is seen to be a 

perfectly valid statement about numbers.  Accordingly we adjoin 1G  to our system also.  

This gives a further amended system which will have its own Gödel proposition 2G  (again 

perfectly valid), and we can then adjoin this, obtaining the next Godel proposition 3G , 

which we also adjoin, and so on, repeating this process indefinitely.  What about the 

resulting system when we allow ourselves to use the entire list 0 1 2 3, , , , ...G G G G  as 

additional axioms?  Might it be that this is complete?  Since we now have an unlimited 

(infinite) system of axioms, it is perhaps not clear that the Gödel procedure will apply.  

However, this continuing adjoining of Gödel propositions is a perfectly systematic system 

of axioms and rules of procedure.  This system will have its own Gödel proposition, say 

G , which we can again adjoin, and then form the Godel proposition 1G , of the 

resulting system.  Repeating, as above, we obtain a list      1 2 3, , , ,...G G G G  of 

propositions, all perfectly valid statements about natural numbers, and which can all be 

adjoined to our formal system. ...” [PENROSE 1989, p.142] 

3. Penrose appears to accept that the encoding  1i iG G  from any iG  in this list to its 

successor 1iG  where i ranges over all ordinals whatsoever, finite and transfinite, is 

algorithmic.  He concludes: “This [adjoining of an infinite family of Gödel propositions] 

requires that our infinite family can be systemized in some algorithmic way.  To be sure 

that such a systematization correctly does what it is supposed to do, we shall need to 

employ insights from outside the system – just as we did in order to see that  kP k  was a 

true proposition in the first place.  It is these insights that cannot be systematized – and, 

indeed, must lie outside any algorithmic action!” [PENROSE 1989, p. 143]. 



4. Both Lucas and Penrose distinguish two versions of Godel’s theorem – the first being a 

statement, denoted 0G ,  about a particular sufficiently strong logic, and the second being 

one about an infinite list of logics, each equipped with a Godel proposition, thus 

generating an infinite list of Godel propositions:      0 1 2 3 1 2 3, , , , ... , , , , ,...G G G G G G G G .  

There is in both arguments an implicit induction, an argument from any to all.  However, 

neither Lucas nor Penrose, explicitly make that inference. 

5. The standard reply to both Lucas and Penrose is summed up by Franzén: “What we know 

on the basis of Gödel’s proof of the incompleteness theorem is not that the Gödel 

sentence G for a theory S is true, but only the implication, “If S is consistent then G is 

true.”  This implication is provable in S itself, so there is nothing in Gödel’s proof to show 

that we know more than can be proved in S, so far as arithmetic is concerned.” [FRANZÉN 

2005, p. 117]. 

6. Notwithstanding if we do allow the universalization of Gödel’s proposition then a formal 

contradiction is entailed, as I shall now proceed to demonstrate.  A logic is defined by a 

set of axioms and a set of rules of inference.  Denote a logic by K and a set of axioms by 

 .  An inference within K then takes the form:  K  where   is a wff of K.  The relation 

of consequence is denoted  K .  Godel’s proposition can itself be summarized very 

succinctly; let Q denote the proposition: 

  KQ Q  Q is defined to the be proposition, “There is not a proof of Q in K 

from  .” 

  The whole labour of the proof of Gödel’s proposition is to show that Q is a genuine 

recursive wff of K.  This is technical, but not required for our purpose.  From the above 

form Gödel’s theorem can be easily demonstrated by reductio: 

 Suppose  K Q .  Then  
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This also entails  K Q . Hence we obtain: 

One-step Gödel theorem 

 Let K be any a consistent, sufficiently strong logic.  Then 

      ONE  and K KG X X X   

 In words, “There exists at a statement X, such that there is no proof of X in K from the 

axioms  , but X is a consequence in K of  .”  There may be many such statements X, but 

Godel’s theorem explicitly constructs one such statement,   KQ Q .  Q is an instance of 

ONEG .  Allowing the universalization of this statement, we obtain 

 Universal Gödel theorem 

 Let K be any a consistent, sufficiently strong logic.  Then 

        UNV  and K KG X X X   



 In words, “Given a sufficiently strong logic K, then for all extensions of K formed by 

adjoining new axioms to K to form a set of axioms   there exists at a statement X, such 

that there is no proof of X in K from the axioms  , but X is a consequence in K of  .” 

 This is an argument in the meta-logic about the logic K.  Denote the meta-logic by   and 

the axioms of the meta-logic by    Then we have in the meta-logic a proof of UNVG .  That 

is:  UNVG .  The standard formalist reply to any mentalist interpretation of this drawn 

by Lucas and Penrose is that the proof in the meta-logic is also first-order.  (See Franzén, 

already quoted above.) 

7. To show that this formalist rejoinder is invalid, now suppose that the meta-logic,  , is 

itself a consistent, sufficiently strong first-order logic.  More specifically, that   has the 

same set of inferences as K and that the axioms of   are such that    j  for some 

ordinal j.  Denote this set of axioms by    .  Then 
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 So the assumption that the universal Gödel’s theorem is one of the first-order logics 

leads to a formal contradiction, albeit that the assumption that the one-step Gödel’s 

theorem is first-order does not entail such a contradiction.1 

8. That this is a valid conclusion can be best affirmed from semantic rather than from 

syntactic arguments; that is, by examination of the models of first-order logics.  But 

firstly, let me address two prima facie objections. 

Objection 1 

The argument is relative to a logic K.  If we assume that G is proven in some other logic, 

say K , then the formal contradiction does not arise.  That is, from  

 UNVK G  

we obtain: 

   and K K K KQ Q     

This is not a contradiction, and we cannot proceed further. 

Reply 1 

K is a sufficiently strong, consistent first-order logic.  That is, it is a combination of the 

complete first order predicate logic with the addition of axioms (of set theory) that make 

it sufficiently strong to express the necessary arithmetical relations for Gödel’s theorem 

                                                 
1 This is exactly analogous to the anti-diagonalisation argument used by Cantor to establish that the 
cardinality of the reals is strictly larger than the cardinality of the rationals. 



to go through.  In so far as K is a first-order logic it has rules of inference that make it 

complete, as demonstrated by the Gödel-Henkin completeness theorem.  Therefore, it is 

not possible to adjoin to K any further rules of inference, or if any additional rule of 

inference is added, then the deductive power of the logic is not thereby increased: “… that 

predicate logic is complete means that the rules of reasoning used in predicate logic are 

sufficient to derive every logical consequence of a set of axioms in a first-order language.” 

[FRANZÉN 2005, p. 27].  In other words, the only way to extend K is by adding axioms, not 

by adding rules of inference.  Furthermore, if we allow ourselves to quantify over all 

sufficiently strong first-order logics, as Gödel’s theorem evidently permits, then the 

formal contradiction does go through.  That is, 

            SECONDORDER  and K KG K X X X   

Here we quantify over all (consistent, sufficiently strong) logics, K.  However, this 

statement is second-order since it quantifies over sets of sets, so is not a candidate for a 

proof in first-order logic.  To avoid the possibility of a formalist rejecting the argument 

on this account, what is required is a first-order statement from which a contradiction can 

be derived.  The statement 

        UNV  and K KG X X X   

is first-order, because we quantify over the sets of axioms   rather than over logics K.2 

Remark 

The objection goes to the essence of the problem.  The meta-language cannot be a first-

order logic.  Thus, indeed, there are rules of inference in the meta-language that are not 

rules of any first-order language.  So indeed we do have: 

   and K KQ Q     

where   is the meta-language.  Any mathematics sufficient to demonstrate the universal 

Gödel theorem cannot be first-order.  This opens up the real question of what the 

differences between first and second order logic are, and refutes the claim often made by 

formalists that all mathematics is derivable in ZFC.  For an example of this claim: “ZFC is 

a remarkable first-order theory.  All of the results of contemporary mathematics can be 

expressed and proved within ZFC, with at most a handful of exceptions.3  Thus it provides 

the main support for the formalist position regarding the formalizability of mathematics.  

                                                 
2 It is usual to represent this set of axioms as a union of one set with another; that is, an extension formed 
by     .  However, this is not correct.  In the relation  K Q  we derive Q from potentially all the 

axioms.    is a conjunction of each axiom:     1 2 ... , where each i  is an axiom; so it is not a 

disjunction as     1 2 ...  would imply; in terms of the Boolean representation theorem this 

corresponds to a lattice meet rather than a join.  So we represent the process of forming extensions to 
axioms by      and not by     . 
3 This “at most” is disingenuous.  It includes the second-order axiom of induction and the second-order 
axiom of completeness.  The former is the foundation of arithmetic and the latter the foundation of analysis.  
So “at most” is a much larger collection than Wolff’s remark implies. 



In fact, logicians tend to think of ZFC and mathematics as practically synonymous.” 

[WOLFF 2005, p. 36].  This claim about ZFC is false. 

9. Objection 2 

 The universal Godel theorem 

         UNV  and K KG X X X   

is not admissible in first-order logic.  This is because the domain of all sets of axioms 

over which the quantifier   ...  ranges is a proper class and not a set. 

Reply 2 

In deriving the formal contradiction we assume that the meta-language is a copy of the 

sufficiently-strong first order logic that is a copy of ZFC.  It may possibly have new 

axioms, but no additional rules of inference.  Hence, the meta-language is equipped with 

transfinite induction.  The set of all well-formed formulas is recursive, and therefore we 

can induct over that set.  Any well-formed formula may be adjoined to form a set of 

axioms  .  That most of these sets will be inconsistent is not a problem, since from an 

inconsistent statement anything follows, so the proposition       and K KX X X   

follows from   even if it is inconsistent as a proposition (for example,      ) .   

10. The formal contradiction demonstrated here is really only the starting point for an 

extensive investigation into the meaning of the (one-step) Gödel’s theorem, 

      and K KX X X  ; this requires a consideration of models.  Here I can only 

indicate the direction in which my own investigation has already proceeded.  Set theory 

was originally devised by Cantor as a model of the continuum, and the continuum is a 

model of Gödel’s theorem.  Let        be the one-point (Alexandroff) 

compactification of the skeleton of the real line, which is standard in the theory of 

Boolean algebras and lattices – see, for example, [DAVEY & PRIESTLEY 1990]4.  Then the 

continuum is the power set of this skeleton, which I denote 2  and call the “derived set” 

(since it is derived from       ).  Within this set    defines a filter (an “up-set”) 

representing the consequences of  , so that     iff KX Xfilter  .  The continuum is 

separated by two mutually disjoint sets: the set of all finite subsets of 2 2 ~ , denoted 

Fin and the set of all cofinite subsets of 2 2 ~ , denoted Cofin.  Between Fin and Cofin 

there is a boundary.  This boundary is inexhaustible and comprises the set of all 

transfinite numbers.  The whole derived set 2  is the continuum.  All compact proofs 

  belong either to Fin or to Cofin.  Fin, Cofin and the boundary are a complete 

partition of the derived set.  I represent all of this information in a diagram of the derived 

set 2 : 

                                                 
4 The one-point compactification is a consequence of the Heine-Borel theorem, which is itself equivalent to 
the Completeness Axiom (say in the form of the Cantor Nested Interval theorem).  So the semantic theory I 
am sketching here is a second-order theory, not a first-order one. 
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In this diagram the “floor” represents the skeleton of the real line.  The symbol      is 

a symbol I use to denote the one-point compactification of this skeleton by adding to a 

potentially infinite partition of the interval 0,1  a neighbourhood of 1.  The skeleton, 

      , comprises an actually infinite number of points equinumerous to  , so the 

resultant derived set is atomic.  However, when      is omitted, the remaining part of 

the skeleton comprises   parts, which is potentially infinite and equinumerous to  , 

and the resultant Boolean algebra 2  is non-atomic.  The pale blue region represents Fin, 

the region of compact proof paths starting from the set of axioms  , which corresponds 

to a lattice point; that is to a meet of propositions.  Outside this region we have  K X .  

The pale yellow region is Cofin.  Between Fin and Cofin is the boundary,  , which 

comprises all transcendental numbers of the continuum, constructed as limit points of 

generic ultra-filters and ideals.  The boundary is of cardinality continuum, but Fin and 

Cofin together are only of cardinality 0 , so the diagram does not represent the differing 

sizes of the regions – the boundary is much larger than the blue and yellow shaded 

regions.  The region shaded in pale grey, which includes the boundary between it and Fin, 

represents the domain of instances of Gödel’s proposition:  0 0 and K KX X  , where K 

is any logic sufficiently strong to express the Gödel proposition.  For any given logic 

 0,K , 0G  is the statement there is a “point”, 0Q  of the boundary that is an instance of 

the relation  0 0 and K KX X  .  This point can be constructed recursively in a first-

order meta-logic.  Therefore, it is also recursive to adjoin 0Q  to 0 , to create a new set of 

axioms:    1 0 0Q .  Then 1G  is the statement that there is a new point, 1Q  for 1  



constructed as lying on the boundary.  The process of adding each iQ  in the chain that 

Penrose refers to: 

     0 1 2 3 1 2 3, , , , ... , , , , ,...Q Q Q Q Q Q Q Q  

with corresponding theorems: 

     0 1 2 3 1 2 3, , , , ... , , , , ,...G G G G G G G G  

is also recursive.  Nonetheless, we “see” that there is another statement, the Universal 

Gödel theorem, 

        UNV  and K KG X X X   

referring to the totality of all such chains that cannot be recursive.  Suppose that it is 

recursive and is consequently one of the recursive logics K.  Then there is a Gödel 

sentence for this logic, and this leads to a contradiction.  So it is not possible through any 

algorithmic process to adjoin this statement to the domain.  It belongs to another logic – a 

second-order logic, which is complete.  The statement UNVG  expresses the inexhaustibility 

of the boundary – the fact that no algorithmic process can generate the boundary. 

11. Formalists take the view that any given axiom is recursive.  For example, “… every axiom 

of a system is trivially provable in the system.” .” [FRANZÉN 2005, p. 33].  Let A be an 

axiom; then we have A A  trivially.  But suppose we attempt to adopt UNVG  as an axiom 

and write UNV UNVKG G . where K is a first-order logic.  But we have already seen that 

 UNVK G  leads to a contradiction for all  ; hence UNV UNVKG G  - also a contradiction.   

UNV UNVKG G  says that there is a compact proof path in a model of the logic K  from UNVG  

to UNVG .  As a proof it would correspond a lattice point G - that is, a path of zero length.  

So what the formal contradiction shows is that UNVG  cannot correspond to a lattice point 

of any lattice whatsoever.  The meta-logic in which there is a proof of G is essentially 

different from the first order logic whose model is a lattice.  The meta-logic does not have 

a lattice model. 
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