MELAMPUS

The formal contradiction implied by the assumption that the universalized
Godel’s theorem is recursive

John Lucas claims that “Godel’s theorem states that in any consistent system which is
strong enough to produce simple arithmetic there are formulas which cannot be proved

in the system, but which we can see to be true” (my underlining). [Quoted in FRANZEN

2005 p.117.] He draws the conclusion “that no machine can be a complete or adequate
model of the mind, that minds are essentially different from machines.” [LUCAS 1961]
There is a related argument by Roger Penrose where he denotes Godel’s theorem by the

symbol P, (k): “The procedure that suggests itself is the following. Let us accept that
P, (k) , which for the present I shall denote by G,, is indeed a perfectly valid proposition;

so we may simply adjoin it to our system, as an additional axiom. Of course, our new

amended system will have its own Godel proposition, say G, , which again is seen to be a
perfectly valid statement about numbers. Accordingly we adjoin G, to our system also.
This gives a further amended system which will have its own Godel proposition G, (again

perfectly valid), and we can then adjoin this, obtaining the next Godel proposition G;,
which we also adjoin, and so on, repeating this process indefinitely. What about the

resulting system when we allow ourselves to use the entire list G,,G,,G,,G;, ... as

additional axioms? Might it be that this is complete? Since we now have an unlimited
(infinite) system of axioms, it is perhaps not clear that the Godel procedure will apply.
However, this continuing adjoining of Godel propositions is a perfectly systematic system

of axioms and rules of procedure. This system will have its own Godel proposition, say

G, , which we can again adjoin, and then form the Godel proposition G,.,, of the
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resulting system. Repeating, as above, we obtain a list G of

propositions, all perfectly valid statements about natural numbers, and which can all be
adjoined to our formal system. ...” [PENROSE 1989, p.142]

Penrose appears to accept that the encoding G, — G,,, from any G; in this list to its

i+l

successor G,

.., where iranges over all ordinals whatsoever, finite and transfinite, is
algorithmic. He concludes: “This [adjoining of an infinite family of Godel propositions]
requires that our infinite family can be systemized in some algorithmic way. To be sure
that such a systematization correctly does what it is supposed to do, we shall need to

employ insights from outside the system - just as we did in order to see that P, (k) was a

true proposition in the first place. It is these insights that cannot be systematized - and,
indeed, must lie outside any algorithmic action!” [PENROSE 1989, p. 143].



Both Lucas and Penrose distinguish two versions of Godel’s theorem - the first being a

statement, denoted G,, about a particular sufficiently strong logic, and the second being

one about an infinite list of logics, each equipped with a Godel proposition, thus
G,..,G,.,,G
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generating an infinite list of Godel propositions: G,,G,,G,,G;, ..., G,,G,.;,  igpeee s
There is in both arguments an implicit induction, an argument from any to all. However,
neither Lucas nor Penrose, explicitly make that inference.

The standard reply to both Lucas and Penrose is summed up by Franzén: “What we know
on the basis of Godel’s proof of the incompleteness theorem is not that the Godel
sentence G for a theory Sis true, but only the implication, “If Sis consistent then G is
true.” This implication is provable in S itself, so there is nothing in Gédel’s proof to show
that we know more than can be proved in S, so far as arithmetic is concerned.” [FRANZEN
2005, p. 117].

Notwithstanding if we do allow the universalization of Godel’s proposition then a formal
contradiction is entailed, as I shall now proceed to demonstrate. A logic is defined by a
set of axioms and a set of rules of inference. Denote a logic by K and a set of axioms by

2. An inference within K then takes the form: =+, ¢ where ¢ is a wff of K. The relation
of consequence is denoted X F; ¢. Godel’s proposition can itself be summarized very
succinctly; let Q denote the proposition:

Q=2/Q Qs defined to the be proposition, “There is not a proof of Qin K

from X.”
The whole labour of the proof of Godel’s proposition is to show that Q is a genuine
recursive wff of K. This is technical, but not required for our purpose. From the above

form Godel’s theorem can be easily demonstrated by reductio:
Suppose Z+, Q. Then

T (2K Q)

T/ Q

This also entails * , Q . Hence we obtain:

One-step Godel theorem

Let K be any a consistent, sufficiently strong logic. Then

Gowe  (3X)(Z /4 X and Tk X)

In words, “There exists at a statement X, such that there is no proof of Xin K from the
axioms X, but Xis a consequence in K of £.” There may be many such statements X, but

Godel’s theorem explicitly constructs one such statement, Q =% /4, Q. Qis an instance of

Goxe- Allowing the universalization of this statement, we obtain

Universal Godel theorem

Let K be any a consistent, sufficiently strong logic. Then

Gow  (VE)(3X)(Z /4 X and £ & X)



In words, “Given a sufficiently strong logic K, then for all extensions of K formed by
adjoining new axioms to K to form a set of axioms X there exists at a statement X, such
that there is no proof of Xin K from the axioms X, but Xis a consequence in K of Z.”
This is an argument in the meta-logic about the logic K. Denote the meta-logic by Q and

the axioms of the meta-logic by I' Then we have in the meta-logic a proof of G, . That

is: ', Gyny - The standard formalist reply to any mentalist interpretation of this drawn

by Lucas and Penrose is that the proof in the meta-logic is also first-order. (See Franzén,
already quoted above.)
7. To show that this formalist rejoinder is invalid, now suppose that the meta-logic, Q, is

itself a consistent, sufficiently strong first-order logic. More specifically, that Q has the

same set of inferences as K and that the axioms of Q are such that I'=%; for some

ordinal j. Denote this set of axioms by I'=X*. Then

Zx b Guny

Zxb (VE)(3X)(Z V4 X and Tk X) Substituting for G,

T b (3X)(2+ ¥4 X and T+ 5 X) Universal instantiation, ¥ = X *

Txb (2 4 Q and T+ Q) Where Q is the specific Godel proposition

for T *
TH b Zx M4 Q and Tk, TxE Q
b e Q and T E Q
o . Q and Tx, Q
So the assumption that the universal Godel’s theorem is one of the first-order logics
leads to a formal contradiction, albeit that the assumption that the one-step Godel’s
theorem is first-order does not entail such a contradiction.'

8. That this is a valid conclusion can be best affirmed from semantic rather than from
syntactic arguments; that is, by examination of the models of first-order logics. But
firstly, let me address two prima facie objections.

Objection 1
The argument is relative to a logic K. If we assume that G is proven in some other logic,

say K =, then the formal contradiction does not arise. That is, from
b, G

we obtain:

b e Q and Tx b F Q

This is not a contradiction, and we cannot proceed further.

Reply 1
K is a sufficiently strong, consistent first-order logic. That is, it is a combination of the
complete first order predicate logic with the addition of axioms (of set theory) that make

it sufficiently strong to express the necessary arithmetical relations for Godel’s theorem

! This is exactly analogous to the anti-diagonalisation argument used by Cantor to establish that the
cardinality of the reals is strictly larger than the cardinality of the rationals.



to go through. In so far as K is a first-order logic it has rules of inference that make it
complete, as demonstrated by the Godel-Henkin completeness theorem. Therefore, it is
not possible to adjoin to K any further rules of inference, or if any additional rule of
inference is added, then the deductive power of the logic is not thereby increased: “... that
predicate logic is complete means that the rules of reasoning used in predicate logic are
sufficient to derive every logical consequence of a set of axioms in a first-order language.”
[FRANZEN 2005, p. 27]. In other words, the only way to extend K is by adding axioms, not
by adding rules of inference. Furthermore, if we allow ourselves to quantify over all
sufficiently strong first-order logics, as Godel’s theorem evidently permits, then the

formal contradiction does go through. That is,

Gieconporer (VK)(VZ)(HX)(Z Y X and Tk X)

Here we quantify over all (consistent, sufficiently strong) logics, K. However, this
statement is second-order since it quantifies over sets of sets, so is not a candidate for a
proof in first-order logic. To avoid the possibility of a formalist rejecting the argument
on this account, what is required is a first-order statement from which a contradiction can

be derived. The statement
Gow  (VE)(3X)(Z /4 X and & X)

is first-order, because we quantify over the sets of axioms X rather than over logics K.
Remark

The objection goes to the essence of the problem. The meta-language cannot be a first-
order logic. Thus, indeed, there are rules of inference in the meta-language that are not

rules of any first-order language. So indeed we do have:
Tx bV Q and 2 R Q

where Q is the meta-language. Any mathematics sufficient to demonstrate the universal
Godel theorem cannot be first-order. This opens up the real question of what the
differences between first and second order logic are, and refutes the claim often made by
formalists that all mathematics is derivable in ZFC. For an example of this claim: “ZFC is
a remarkable first-order theory. All of the results of contemporary mathematics can be
expressed and proved within ZFC, with at most a handful of exceptions.’ Thus it provides

the main support for the formalist position regarding the formalizability of mathematics.

2 It is usual to represent this set of axioms as a union of one set with another; that is, an extension formed
by ¥’ =3 U ¢ . However, this is not correct. In the relation =+, Q we derive Q from potentially all the

axioms. X is a conjunction of each axiom: =@, A@, A..., where each ¢, is an axiom; so it is not a

disjunction as X =¢, U@, U... would imply; in terms of the Boolean representation theorem this
corresponds to a lattice meet rather than a join. So we represent the process of forming extensions to
axioms by 2’ =% +¢ andnotby ' =3 U g .

3 This “at most” is disingenuous. It includes the second-order axiom of induction and the second-order
axiom of completeness. The former is the foundation of arithmetic and the latter the foundation of analysis.
So “at most” is a much larger collection than Wolff’s remark implies.



In fact, logicians tend to think of ZFC and mathematics as practically synonymous.”
[WOLFF 2005, p. 36]. This claim about ZFC is false.

9. Objection 2
The universal Godel theorem

Gow  (VE)(3X)(Z V4 X and =& X)
is not admissible in first-order logic. This is because the domain of all sets of axioms
over which the quantifier (VZ)... ranges is a proper class and not a set.

Reply 2
In deriving the formal contradiction we assume that the meta-language is a copy of the

sufficiently-strong first order logic that is a copy of ZFC. It may possibly have new
axioms, but no additional rules of inference. Hence, the meta-language is equipped with
transfinite induction. The set of all well-formed formulas is recursive, and therefore we
can induct over that set. Any well-formed formula may be adjoined to form a set of

axioms X. That most of these sets will be inconsistent is not a problem, since from an

inconsistent statement anything follows, so the proposition (3X)(Z 4 X and Xk, X )

follows from X even if it is inconsistent as a proposition (for example, S=p A —p).

10. The formal contradiction demonstrated here is really only the starting point for an
extensive investigation into the meaning of the (one-step) Godel’s theorem,
(3X)(= ¥ X and =k X); this requires a consideration of models. Here I can only
indicate the direction in which my own investigation has already proceeded. Set theory
was originally devised by Cantor as a model of the continuum, and the continuum is a
model of Godel’s theorem. Let N, =NuU{N} be the one-point (Alexandroff)
compactification of the skeleton of the real line, which is standard in the theory of
Boolean algebras and lattices - see, for example, [DAVEY & PRIESTLEY 1990]*. Then the
continuum is the power set of this skeleton, which I denote 2"+ and call the “derived set”

(since it is derived from N_=Nu {N} ). Within this set £ = ¢ defines a filter (an “up-set”)
representing the consequences of X, so that X e filter():) iff 2, X. The continuum is

separated by two mutually disjoint sets: the set of all finite subsets of 2" ~ 2“, denoted
Fin and the set of all cofinite subsets of 2" ~ 2, denoted Cofin. Between Fin and Cofin
there is a boundary. This boundary is inexhaustible and comprises the set of all
transfinite numbers. The whole derived set 2" is the continuum. All compact proofs

T I ¢ belong either to Fin or to Cofin. Fin, Cofin and the boundary are a complete
partition of the derived set. I represent all of this information in a diagram of the derived

set2"-:

4 The one-point compactification is a consequence of the Heine-Borel theorem, which is itself equivalent to
the Completeness Axiom (say in the form of the Cantor Nested Interval theorem). So the semantic theory I
am sketching here is a second-order theory, not a first-order one.



Skg )
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A corresponding to the one-point
compactification of the skeleton
of the real line.

0

In this diagram the “floor” represents the skeleton of the real line. The symbol A = {N | is
a symbol I use to denote the one-point compactification of this skeleton by adding to a
potentially infinite partition of the interval [0,1) a neighbourhood of 1. The skeleton,

N, =NU{N}, comprises an actually infinite number of points equinumerous to @, so the
resultant derived set is atomic. However, when A = {N} is omitted, the remaining part of
the skeleton comprises N parts, which is potentially infinite and equinumerous to < w,

and the resultant Boolean algebra 2°“ is non-atomic. The pale blue region represents Fin,

the region of compact proof paths starting from the set of axioms X, which corresponds
to a lattice point; that is to a meet of propositions. Outside this region we have * /4 X.

The pale yellow region is Cofin. Between Fin and Cofin is the boundary, é» , which
comprises all transcendental numbers of the continuum, constructed as limit points of

generic ultra-filters and ideals. The boundary is of cardinality continuum, but Fin and
Cofin together are only of cardinality ¥, so the diagram does not represent the differing

sizes of the regions - the boundary is much larger than the blue and yellow shaded

regions. The region shaded in pale grey, which includes the boundary between it and Fin,
represents the domain of instances of Godel’s proposition: £, /% X and £, F, X, where K
is any logic sufficiently strong to express the Godel proposition. For any given logic

(K,ZO) , G, is the statement there is a “point”, Q, of the boundary that is an instance of
the relation %, /4 X and X, F, X . This point can be constructed recursively in a first-
order meta-logic. Therefore, it is also recursive to adjoin Q, to %, to create a new set of

axioms: X, =X, +Q,. Then G, is the statement that there is a new point, Q, for X,



11.

constructed as lying on the boundary. The process of adding each Q; in the chain that

Penrose refers to:

Q0 Q1 Q0 Q5 03 Q) Q1 Q,2,Q, 55

with corresponding theorems:
G,,G,,G,,G,, ..., G,,G,.,,G,.,,G

@) S o+ S 0+2) S o+390

is also recursive. Nonetheless, we “see” that there is another statement, the Universal

Godel theorem,

Gow  (VE)(3X)(Z /4 X and £ & X)

referring to the totality of all such chains that cannot be recursive. Suppose that it is
recursive and is consequently one of the recursive logics K. Then there is a Godel
sentence for this logic, and this leads to a contradiction. So it is not possible through any
algorithmic process to adjoin this statement to the domain. It belongs to another logic - a

second-order logic, which is complete. The statement G,, expresses the inexhaustibility

of the boundary - the fact that no algorithmic process can generate the boundary.
Formalists take the view that any given axiom is recursive. For example, “... every axiom
of a system is trivially provable in the system.” .” [FRANZEN 2005, p. 33]. Let A be an

axiom; then we have A+ A trivially. But suppose we attempt to adopt G, as an axiom
and write Gy H¢ Gy - Where K is a first-order logic. But we have already seen that

2 ¢ Gy leads to a contradiction for all X; hence Gy F¢ Gy - @lso a contradiction.
Guny ¢ Gy says that there is a compact proof path in a model of the logic K from Gy
to Gy - As a proof it would correspond a lattice point G - that is, a path of zero length.

So what the formal contradiction shows is that G,, cannot correspond to a lattice point

of any lattice whatsoever. The meta-logic in which there is a proof of G is essentially
different from the first order logic whose model is a lattice. The meta-logic does not have

a lattice model.
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