
The expressive power of formal languages  
 

 
MELAMPUS 
 

The book paradox 
 

Since formal languages may be recursively generated, it would appear that any wff in a formal 

language denotes (refers to) a structure that is effectively computable.  Upon further reflection 

it transpires that this impression must be false, since on that basis it would be impossible to 

refer to any structure that was not “effective”; the whole question of what is effective and 

what not would be meaningless; it would be meaningless to discuss or refer to any function or 

structure that was not effective.  We see immediately that the putative fact that a formal 

language is recursively generated does not strictly entail that the objects that expressions of 

that language refer to or denote are themselves recursive (effective). 

This feature of formal languages, namely that, though recursively generated 

themselves, their denotations may or may not be effective computable entities, is illustrated 

by the “book paradox”.  This is the subject of the story by Borges1 – the idea that one could 

make a program that would progressively and automatically generate every book whatsoever 

simply by combinatorics.  Of these “books” the majority would be sheer nonsense but some 

would comprise whole texts.  Hamlet would eventually be generated in this way – so would 

every theorem that has been and ever will be proven.  And so on.  What this shows is that the 

mere fact that meaningful expressions can be generated at random (or systematically, which 

amounts to the same thing, their appearance being random) does not mean that their 

denotations are effective.  The solution must be that the manner in which the expressions are 

generated must match the effective way in which their denotations are generated.  If an 

expression   is recursively generated from an expression   it does not follow that the 

relation R that   denotes can be recursively generated from the relation S that   denotes.  

For such a correspondence to hold it must be that the manner in which   is generated from 

  matches the manner in which S is generated from R.  There must be a homomorphism or 

structure preserving relationship, and in the absence of such relationship, we cannot conclude 

from R is recursive that S is recursive.   

 

Expressive power of language used in Gödel’s theorem 
 

A preliminary point is that in the proof of Gödel’s theorem the introduction of Gödel 

numbering is a red herring!  This may seem an extraordinary claim in view of the fact so much  

attention is given to Gödel numbering, which is seen as a crucial step in the proof.  However, 

Gödel numbering is just another cipher for a wff and nothing more – a fact that is clear from 

                                                           
1 Jorge Luis Borges: The Library of Babel in Labyrinths. 



some interpretations of Gödel numbers as just ASCI code for the formulas.  The device of 

Gödel numbering is merely used to convince one that certain formulae are recursively 

generated from other formulae – but that is something that might have been accepted merely 

by examining the formulae themselves.  In my formal version of Gödel’s theorem [Chapter 9]  I 

provided a table of translations that includes the following... 

 

 

 
    

 



  



  

  
    

       

          

  1 2

Godel number, / "meta-language" Formula, /  "object-language"

...

Pf ,

Sub , ,

... ... ... ... ... ...

n

X X X

X X

X X X X X


 

 

I labelled the two sides of the translation, “meta-language” on the one hand, and “object-

language” on the other.  This is in accordance with the popular description of Gödel’s theorem 

as a result of meta-mathematics.  This distinction is misconceived.  The Gödel numbers are 

merely alternative formal codes for the formulae, and we have not broken out of the object-

language (of a sufficiently strong first order logic) at all in the above table, neither into the 

lattice that is its model – nor into the meta-language to discuss that model.  It is indeed 

correct to say that the whole reasoning of Gödel’s theorem proceeds in the formal language in 

which it is written. [See 9/1.5 for initial discussion of this point] 

Nonetheless, in the proof of Gödel’s theorem the expressive power of the formal 

language is shown to transcend the class of effective objects.  The formal language contains 

names of objects that are not effective.  My task is to show in detail how this happens.  We 

start with the Gödel number   X  of an effective entity that, for the sake of the argument, 

must be dependent on a parameter  , so we may write  X X .  Now   is a free variable in 

X, which endows  X  with the expressive potential of a function.  To explain: in predicate 

logic, X is a predicate and  X  stands for an arbitrary predication of X of an individual.  But 

here we are using   as a variable, or parameter.  The situation is akin to that in Whitehead 

and Russell [1910]2 where predicates are actually functions.   X  is used both as a function 

and to denote the image (range) of the function X:         :  for all X y y X L  where L is 

the lattice.  That is, implicit in expression  X  is the assumption that   ranges over lattice 

points.  Thus X is a mapping of one lattice to another and copies the structure of the lattice 

over which   ranges into codomain (which is also a lattice).  As   varies  X  over lattice 

points of the codomain.  For fixed  ,  then  X  becomes a lattice point.  Because   is a 

variable, then it can range over the whole lattice, and hence the range of  X  corresponds.  

Because  X  is a function, then, via the implicit function theorem, the indeterminate   may 

                                                           
2 Gödel’s original theorem was predicated of that system (Gödel [1931]). 



itself be the image of another function  Y Y .  So we may substitute Y for   in  X  to 

obtain   X Y .  The expression   X Y  records these functions as mappings between 

three lattices; firstly the lattice over which   is defined, then its image  Y , which is then 

mapped to   X Y .  In the expression   X X  the mapping has become an automorphism 

of the lattice: domain and image coincide.3   As   X X  is a mapping of the lattice onto 

itself, it may and does have a fixed point.  Denote this fixed point by b.  Then 

     b X b X X b .  As X is an arbitrary function any fixed point could be anywhere in the 

lattice.  So far, no “paradox” or “problem” has arisen for the expressive power of the language 

has not be stretched beyond that which is effective. 

This gives another characterisation of the property of a logic of sufficient strength.  A 

logic with sufficient strength enables one to define automorphisms of its models; it is from 

these automorphisms that the fixed point property arises.  This in turn allows one to 

demonstrate the truth of Gödel’s incompleteness theorem.  Sufficient strength turns notional 

predicates of the compact region  CF  [5/5.8] into functions of the entire lattice; hence it 

conceptually embeds  CF  into its completion, 2 , and thereby renders locally compact 

proof paths in  CF  essentially incomplete. 

       Pf , X  is the Gödel name of the formula  X  where   is a compact proof 

sequence.  In this context it is more appropriate to use the equivalent notion   X  where   

denotes a set from which X is derived, which includes the set of axioms for the lattice.  Since 

       Pf , X  is recursive the relation  X  denotes a compact proof path in the lattice.  It 

also says that X lies in the compact filter defined by X .                    Sub , ,X Y X Y  also 

does not take us out of the class of finite filters.                  Pf ,Sub , ,X X X  which expresses 

   X X  also does not take us out of the finite filter defined by  .  

It is precisely at                        Pf ,Sub , ,X X X X X  that the expressive 

power of the language is extended by a recursive process in the formal language to denote an 

object that is not effective in the model.      X X  denotes the whole part of the lattice 

that is the complement of the lattice     X X .  It is not a lattice point.  As the 

complement of an open set it includes both the boundary of     X X   and everything that 

is not contained in its interior.  By this device we have named something that is not a lattice 

point or a relation between lattice points.  The logic has been allowed to transcend in 

denotation whatever is recursive in the compact filter     X X . 

                                                           
3 For a given individual a of the elementary domain, the expression   X X a  presents no more difficulties 

than it would for any function,   f f a . 



At the next stage, where                         Pf ,Sub , ,P x x X X X X X ,    k P  we have 

quantified over all compact paths (or their corresponding lattice points) in the lattice to obtain 

the expression of that which cannot be proven by compact paths in the lattice.  When we 

substitute P for X we obtain     Pf ,Sub , ,k k k ,    P P ; this is something that is 

necessarily false of the lattice, though there is no finite proof in the lattice that this is so.  By 

naming the fixed point of this function,               Pf ,Sub , ,Q x x k k k P P ,    m Q  

we quickly obtain the formal expression of this: - 

 

      







P P P P

Q Q
 

 

Whereas    X X  places the fixed point on the boundary or above, Q Q  places it 

precisely on the boundary.  [6 / 2.3]  So by this means we have achieved an expressive 

expansion of the formal language so that it can name and “define” lattice points that cannot 

effectively (that is, finitely) be reached from an arbitrary lattice point  . 

It is possible to examine a version of Gödel’s theorem that is based on anti-

diagonalisation to explore the expansion of the expressive power of the language there as 

well.  We start with some notion of the set of all recursive functions, and presume that these 

are represented in the formal language by an enumeration of wffs,   1 2 3, , , ... .  By anti-

diagonalisation we define an expression by the rule      1nn n .  Then the assumption 

that this on the list of recursive functions leads to the contradiction,      1kk k .  So we 

see immediately that anti-diagonalisation leads to an expansion of the expressive powers of 

the language. 

 

Expressive power of formal languages in general 
 

Turning to the discussion of language in general.   

 

1. Formal languages contain expressions can be recursively generated 

from an initial set of expressions. 

2. Among these expressions some denote effectively computable entities 

and others do not. 

3. There have always been a substantial number of examples of 

expressions that denote objects that are not effective.  For example 

 3.1    P 2  

It is worth noting that the power set operation when applied to 

infinite sets is non-effective.  If indeed we knew how to 

construct    P 2  there would be no problem of the 



continuum.  The whole endeavour to solve the continuum 

hypothesis devolves around the desire to construct    P 2  

from below. 

 3.2 The least definable ordinal. 

3.3 As indicated, by anti-diagonalisation we can define sets that are 

not effective. 

3.4 1  is not effective but it can be named as “the least ordinal not 

equinumerous to  0 ”. 

3.5 Through forcing, all generic sets. 

4. Negation, quantification, anti-diagonalisaton and forcing can lead out of 

the class of effective expressions to the class of those expressions that 

are non-effective. 

 

To reiterate the conclusion: the expressions of all sufficiently strong formal languages are 

recursively generated, but their denotations are not. 

In formal languages the building blocks of the language are defined at the first stage, 

and thereafter all expressions are simply combinations of those building blocks in accordance 

with formation rules.  In natural languages this is not so.  Natural languages allow for 

indeterminate expansions of the vocabulary and expressions by means of metaphor and 

concept stretching (See Lakatos [1979] Chap.1 Sec.8).  When human beings encounter a 

difficulty in a problem they usually overcome that difficulty by inventing a new concept, one 

that is no mere definition by equivalence of existing concepts; often this invention is 

accompanied by the invention of a new word or expression.  A natural language is a living 

language whose generation, life and decay mirrors the generation, life and decay of the culture 

that uses it.   

The expressions “definable set / function / relation” are highly ambiguous.  Some 

definitions of sets are definitions of objects that are effectively computable, whereas others 

are not.  It therefore does not follow that merely to define a set is to define an object that is 

effective not even when that definition occurs within a first-order language.  We have seen in 

this chapter that if we start with objects which are effective certain devices of our language 

can lead us out of the class of effective objects.  Therefore, definition is a very tricky business 

indeed, especially if we are obliged to keep track of what is and what is not effective in it. 

The Arithmetical hierarchy 
 

Just as the expressive power of formal languages ranges “far beyond” that which is effective, 

the arithmetical hierarchy [Chap.2 / 2.4.2] is in general not effective, and “definable” set does 

not mean the same as effective.  Negation, quantification, anti-diagonalisation and forcing can 

lead out of the class of effective expressions to the class of those expressions that are non-

effective.  Thus a definable set that is effective at one level can through these devices be 

turned into a definable set that is not effective.  Similarly, the term “constructible” is not a 

synonym of “effective”.  Sets in the constructible hierarchy are not necessarily recursive.  

Evidence for this view: - 



 

1. “It is worth noting that, in ZF or ZFC, all complements are relative.  That 

is, if x is a set, then  :z z x  cannot be a set; it is always a proper 

class.” (Wolf [2005] p. 75.)  What this illustrates is that complementation 

can take one out of the class of effective sets; the extraordinary fact is 

that, in the absence of any restriction, it always does.  However, if there 

is a set model of set theory (which is doubtful) then that might make the 

complement of a set into a set – it certainly won’t make it into an 

effective set – so no gain for the view that “definable” is equivalent to 

“recursive”.  Such a view would depend on the existence of a large 

cardinal – so upon an extraneous axiom.  Thus we see that any 

construction or hierarchy of constructions that permits complements is 

potentially a source of non-effective sets, even if at some base level the 

sets are effective. 

2. We have some specific “effective” results: 

2.1 Intersections, complements and unions of PR relations are PR. 

2.2 Intersections, complements and unions of recursive functions 

are recursive. 

2.3 Domain, range and graph of any recursive function must be R.E. 

These all lie on the “positive” side of the question of transitivity of 

effectiveness; but by implication they indicate the general result: 

effectiveness is not a transitive relation under “definition by formula”. 

3. The cumulative hierarchy:  V  contains non-effective (recursive) sets.  

Hence, a set may be defined within  V  without being effective.  All the 

proper axioms of ZFC except the axiom of infinity are true in the 

structure   ,V . 

Definable and effective 
 

The confusion between the use of “definable” as a synonym of “effective” is frequent.  For 

example, we see the theorem: - 

 

 Result 

The set of ordered pairs:      , :  is definedH w x x  is undefinable. 

  Proof 

  Let the characteristic function of this set be 

  
 


 


1 if ,  is defined

0 otherwise
H

w x
 

  Suppose this is recursive, and let 

   
 

 




  


0 if , 0

1 otherwise

H

x

x x
f x

x
 



Since we suppose H  is recursive, then f must be, and  kf  for some k.  

then         0 if , 0 if  is undefinedk H kk k k k , and      1k kk k  

otherwise.  This is a contradiction.  Hence H is undefinable. 

 

The point here is that in      , :  is definedH w x x  the term “defined” means “effective” or 

“recursive”; yet in some other sense H has been defined, and to say it is “undefinable” means 

that it has been defined and yet is not effectively computable. 

 Representable 
 

Consider the definition of a “representable” relation: 

 

    1 1, ... ,    iff   , ... ,n na a R K A a a   

 

where A is a wff.  At first glance the term “representable” might be taken to mean something 

more than just “recursive”, but because of the relation of deduction required in the language, 

only recursive relations can be “representable” in this sense.  The same applies to the 

definitions of “expressible function” and “definable set” (Mendelson [1979] p. 134)  – they are 

defined in such a way that only effective sets can match them.4  Consider the following 

statement of a corollary to Church’s Theorem: -  

 

The set of all true sentences in the language of PA is not recursive, and, hence, 

not representable. (Wolf [2005] p. 137.)   

 

My underlining.  We see here the specific use of “representable” to mean only a formula 

representing a recursive function.  So the general statement, “truth is not definable” is 

not proven.   What is proven is that truth is not a recursive relation. 

Berry’s paradox 
 

At the root of the problem of definability – is Grelling’s paradox. 

 

Let   be defined (A) as the least undefinable (B) ordinal. 

 

The paradox is that   is defined iff   is undefined. 

 

Resolution of this paradox: The word “defined” is being used in different senses.  One of these 

meanings is “named”.  In (A) “defined” means “named”, and in (B) “defined” is relative to a 

specific relation, for example, a list; the term “the least” only has meaning in the context of a 

well-ordered list.  It might be argued that there is no least undefinable ordinal.  We have 

                                                           
4 Assuming that the deductive relation   is compact.   



Plato’s, “How is it possible to think the thing that is not?”5  We have the question of what does 

“the unnameable” mean?  “The unmentionable.”  By anti-diagonalisation we construct an 

“undefinable” function, but we do construct it – i.e. define it.  All these problems are resolved 

by realising that the term “definable” is being used in different senses whenever a version of 

Berry’s paradox is suggested. 

The arithmetical hierarchy revisited 
 

The arithmetical hierarchy is introduced by the analysis of definable sets of structures.  In this 

context “definable” means roughly what one would intuitively expect it to mean: that is, a 

definable structure is one that we can name and characterise in some way, irrespective of 

whether it is effective or not.  Sets and functions “definable” in the standard model N 6  of 

arithmetic are said to be “arithmetical”.  Here “definable” does not mean “recursive”. 

 

1. Every natural number is defined by a term (numeral) and hence is  -

definable. 

2. Every set representable in PA is arithmetical.  Every recursive set is 

arithmetical. 

3. In fact, a subset of k  is RE iff it is 1 . 

4. A set is recursive iff it is 1 .This means that if a set is  , 2n n  is 

recursive then it must be equivalent to a 1  set.  In that case  , 2n n  shall be 

said to be essentially ineffective (my term) if there is no 1  equivalence.  The 

issues raised here are the same as those involved in quantifier elimination: if we 

can eliminate all quantifiers then the structure is recursive.  In model theory 

definable   recursive. 

Preservation theorems 
 

This also involves the question of preservation theorems. 

 

A first-order formula is said to be positive if it does not contain the connectives, 

  , and .  So it may contain   and   as well as quantifiers. 

 

This is a tacit admission that complements lead out of the class of effective structures and so 

fail to preserve structures.  

 

Lyndon’s theorem 

Let T be a consistent theory.  Then T is preserved under homomorphic images iff T is 

equivalent to a set of positive sentences. 

                                                           
5 This is a quotation from Plato’s dialogue The Theatetus.  Plato attacks the doctrine of Protagoras 

described as 167A of that dialogue: “for it is not possible either to think the thing that is not or to think 

anything but what one expreiences, and all experiences are true.”  See Cornford [1979] p. 110. 



 Examples 

 The axioms of group theory are positive. 

 The axioms of ring theory include 0 1 which is not positive. 

 

 Preservation under submodels and intersections 

 Definition: Let T be a theory.  T is said to be preserved under submodels if B T  and 

S U B  imply U T . 

 

Los-Tarski theorem 

A theory is preserved under submodels iff it is equivalent to a set of 1  sentences. 

 

These “positive” results indicate the “negative” conclusion: that a theory is not preserved 

otherwise.  In other words, it is “easier” not to preserve a theory than to preserve it.7 

In conclusion: the power of formal languages, including first-order logic, enables one 

to define and express notions that refer to objects that are not recursive.  It is not sufficient 

for such an expression to be formally manipulated in a recursively generated language for the 

object that it denotes also to be effectively computable. 

 

 

                                                                                                                                                                      
6 See Boolos and Jerffrey [1980] Chatper 17. 
7 Preservation under direct products leads to the topic of Horn formulas. (See Monk [1976] p. 398) 


